Published July 8, 2021 | Version v1
Taxonomic treatment Open

LITHELIIDAE Haeckel, 1862

Description

Family LITHELIIDAE Haeckel, 1862 sensu Suzuki, emend. herein

Lithelida Haeckel, 1862: 240, 515-519 [as both family and tribe]; 1882: 464 [as a family]; 1884: 29 [as a family]; 1887: 604, 688-691 [as a family]. — Zittel 1876-1880: 124 [as a group]. — Mivart 1878: 176 [as a subsection]. — Bütschli 1889: 1968 [as a family]. — nec Rüst 1892: 175 [as a family]. — Schröder 1909: 4 [as a family]. — Anderson 1983: [as a family].

Spongocyclida Haeckel, 1862: 239, 452, 469 [as a tribe]. — Stöhr 1880: 119 [as a family].

Ommatodiscida Stöhr, 1880: 115 [as a family]. — Haeckel 1887: 484, 500 [as a subfamily]. — Dreyer 1889: 29 [as a subfamily]. — Schröder 1909: 42 [as a subfamily]. — Chen et al. 2017: 140 [as a subfamily].

Spireuma Haeckel, 1882: 464 [nomen dubium, as a subfamily].

Spiremida – Haeckel 1887: 691 [nomen dubium, as subfamily]. — Schröder 1909: 57 [as a subfamily].

Lithelidae [sic] – Popofsky 1908: 230 (= Litheliidae); 1912: 151. — Chediya 1959: 159. — Tan & Tchang 1976: 263. — Tan & Su 1982: 161. — Tochilina 1985: 101-102. — Chen & Tan 1996: 152. — Tan 1998: 274-275. — Kozlova 1999: 102. — Tan & Chen 1999: 260-261.

Litheliidae – Poche 1913: 210. — Campbell 1954: D99. — Riedel 1967b: 295; 1971: 655. — Nakaseko et al. 1975: 171. — Petrushevskaya 1975: 572; 1979: 109-110. — Nakaseko & Sugano 1976: 126. — Anderson 1983: 39. — Dumitrica 1984: 101. — Takahashi 1991: 91. — Hollis 1997: 44. — Boltovskoy 1998: 32. — Anderson et al. 2002: 1003. — De Wever et al. 2001: 164. — Afanasieva et al. 2005: S288. — Afanasieva & Amon 2006: 130. — Suzuki et al. 2009d: 248. — Chen et al. 2017: 157-158.

Ommatodiscinae – Campbell & Clark 1944a: 25; Frizzell & Middour 1951: 24. — Campbell 1954: D92. — Chediya 1959: 133. Litheliinae – Campbell 1954: D99. — Tan & Tchang 1976: 263.

Spireminae [sic] – Chediya 1959: 159 (= Spirematidae) [nomen dubium]. — Tan 1998: 275. — Tan & Chen 1999: 261.

Spongocycliidae – Kozur & Mostler 1978: 132-133.

Ommatodiscidae – Kozur & Mostler 1978: 134.

TYPE GENUS. — Lithelius Haeckel, 1861b: 843 [type species by monotypy: Lithelius haeckelspiralis Haeckel, 1861b: 843, nomen novum Matsuzaki & Suzuki in Matsuzaki et al., 2015].

INCLUDED GENERA. — Lithelius Haeckel, 1861b: 843 (= Lithospira with the same type species;? Azerbaidjanicus n. syn.). — Middourium Kozlova, 1999: 101 (= Monobrachium n. syn.). — Spiremaria Kozlova, 1960: 315 (= Spiromultitunica n. syn.). — Spongocyclia Haeckel, 1862: 469 (=? Lithocarpium n. syn., Ommatodiscinus n. syn., Ommatodiscus n. syn., Ommatodisculus n. syn.).

INVALID NAME. — Spirema.

NOMINA DUBIA. — Spiremarium, Spiremidium, Spireuma, Spongodruppium.

DIAGNOSIS. — Densely concentric or densely coiled shells, of spherical, ellipsoidal, disk-like and/or flattened lenticular shape, are found around a spherical microsphere. Straight robust radial beams emanate from the microsphere or are adjacent to the innermost shells. Pylome, when present, is found without robust walls. The protoplasm is documented for Lithelius. An opaque reddish-brown endoplasm occupies the shell. Hence, the endoplasm is invisible in living specimens. Pseudopodia are found radiating throughout the shell. Isolated skeletal fragments are found scattered in bundles of pseudopodia. Strongly cohesive pseudopodia appear to be immobile. A gelatinous matter is also present. No algal symbionts were observed.

STRATIGRAPHIC OCCURRENCE. — Early Paleocene-Living.

REMARKS

The typical structure of the Litheliidae shows an extremely organized distribution of concentric inner walls, straight radial beams and openings on the walls (Spiremaria: Chen 1974: pl. 1, fig. 8; 1975: pl. 9, figs 4, 5; Weaver 1976: pl. 7, fig. 1). This framework produces very straight holes from the surface to the center of the shell (see also Lazarus et al. 2005: pl. 11, fig. 19). This characteristic is important in distinguishing the Litheliidae from other similar genera of different families such as Tholospira (Larcospiridae). This structure is also well observed in Lithelius (Petrushevskaya 1975: pl. 32, figs 1-3). The Litheliidae can be distinguished from the four-cornered Spongodiscidae (e.g., Spongaster) by the presence of concentric-type spongy structures on their corners. They are distinguished from the Euchitoniidae by the presence arms and the three distinctive innermost concentric shells called “margarita”.The Litheliidae can also be distinguished from the Spongopylidae in having the walled pylome that penetrates though the internal structure to the center and the lack of straight robust radial beams. The non-walled pylome is illustrated by Chen (1974: pl. 2, figs 1, 2). The Trematodiscidae are easily distinguishable from the Litheliidae by their particular decussated central part. The Spireuma -form of Lithelius exceptionally lacks the straight robust radial beams, making their differentiation from Larcopyle -, or the Stomatodiscus -form of Tholospira (Larcospiridae) extremely difficult. The former is only distinguishable from the latter by absence of the box- or corner shaped central structure observable under a light microscope. Spongocyclia is also sometimes confused with Flustrella (Trematodiscidae), Spongodiscus (Spongodiscidae) and Spongopylidium (Prunopylidae), but it differs from the latter three genera by its tight, very systematic, concentric structure with robust straight radial beams originating from the central part. The difference between Spiremaria and Middourium can be found by observing additional incomplete concentric walls or a spongy structure, on one or both pole sides. The aforementioned may be conspecific with each other. Internal skeletal structures were illustrated for Spiremaria with thin-section images (Popova 1991: pl. 2, figs 1, 2;1993: pl. 9, figs 1a-2b; Tochilina 1985: pl. 3, fig. 3) and broken specimens (Chen 1974: pl. 1, fig. 4; Weaver 1975: fig. 2.4; 1976: pl. 7, fig. 1; Sugiyama et al. 1992: pl. 7, fig. 7), for the Spirema -form of Lithelius (Popova 1991: pl. 2, fig. 6; Tochilina 1985: pl. 2, figs 1, 2) and for the Ommatodiscus - form of Spongocyclia (O’Connor 1999: fig. 6M; Ogane & Suzuki 2006: pl. 2, fig.7). This structure was also documented for Middourium (Tochilina 1985: pl. 2, figs 6, 9; Barwicz- Piskorz 1999: figs 2.J-2.L, 3.A-3.B; Jackett & Baumgartner 2007: pl. 1, fig. 35), the Spireuma -form of Lithelius (Barwicz- Piskorz 1999: figs 2.B-2.D; Nishimura 2001: pl. 2, fig. 16) and Spongocyclia (Li et al. 2018: figs 7.3, 7.4). Images of living specimens were obtained for Lithelius (Suzuki et al. 2013: figs 7.2, 7.4-7.6). Algal symbionts and protoplasm were documented using epi-fluorescent DAPI dyeing techniques and other dyeing methods for Lithelius (Ogane et al. 2014: pl. 1, figs 1-2). Undescribed genera still remain (Dumitrica 1973b: pl. 5, figs 4-6; Hollis 1997: pl. 10, fig. 9).

VALIDITY OF GENERA

Lithelius

The current concept of Lithelius is helpless to understand differences in the genera of the Litheliidae. This genus is characterized by its spherical to subspherical shape. No pylome in general is presented; but if the skeleton develops a “pylome-structure”, that always opens towards the outermost hard cortical shell (“crust” in the terminology of Ogane & Suzuki 2006). In other words, it never penetrates through any other internal structure. The drawing of the type species for Azerbaidjanicus appears to indicate a convex-lens shape but in the original description Mamedov (1973: 61) clearly wrote about “a regularly spherical form” and, thus, Azerbaidjanicus is synonymized with Lithelius. The oldest available name is Lithelius.

Middourium

Both Middourium and Monobrachium were simultaneously established by Kozlova (1999: 101 for Middourium and 102 for Monobrachium). The translated description of Middourium from Russian follows. “ Sponguridae with a regular elliptical shell slightly truncated near polar areas; 10 or more lattice internal shells distributed in tight spirals separated by intervals no larger than 7-10 µm. Conical pylomes at each area. Shell sometimes enveloped by a thin porous plate. ” That of Monobrachium fol- lows. “ Sponguridae with a shell elongated along a single axis composed of a sub-spherical or plainly ellipsoidal part and a single large appendage of also ellipsoidal shape. The thickly spongious tissue of the internal ellipsoidal part seems to form concentrical of closed ellipsoidal envelopes which are very closely distributed. Pylome-shaped aperture may be located at both pole of the shell, or a single one, and the whole shell may be enveloped by a finely porous envelope.” The major difference written in the original description is the presence of a single large appendage only in Monobrachium. Hetero-coverage on one pole of the ellipsoidal shell commonly occurs during ontogeny so this difference does not correspond to a genus level. Both these genera have also a conical pylome at each pole. Presence of the pylome may be recognized with tiny spinules around the pylome. Some confusion may occur when there is a single appendage at one polar end, so that Middourium is selected as valid name. The taxonomic position of Middourium at the family level needs to be reexamined because the support image of this genus in the Atlas has a walled pylome.

Spiremaria

Spiremaria is characterized by a highly dense concentric structure and an ellipsoidal to ovoidal shape. Almost all outer concentric shells cover throughout the shell. The original definition of Spiromultitunica specifies an ellipsoidal shape and a dense convolution (Tochilina & Popova in Tochilina 1985: 105). As referred to a thin sectioned specimen of Spiromultitunica (Popova 1993: pl. 9, fig. 2), this genus has the same internal structure and shape as Spiremaria. Kozlova (1960: 315) does not comment the occurrence of a pylome in Spiremaria whereas Tochilina & Popova (in Tochilina 1985) described a pylome at one pole. However, this “pylome-structure” opens on the outermost hard cortical shell (“crust” in the terminology of Ogane & Suzuki 2006) and it never penetrates through any other internal structure. Such ambiguous pylome is insufficient to clearly establish a division into two genera, and thus Spiromultitunica is synonymized with Spiremaria. Although the independency of Spiremaria from Lithelius needs a phylogenetic study of the Litheliidae, typical Lithelius always lack pylome or pylome-like structures on the crust.

Spongocyclia

Spongocyclia is distinguished from any other genera in the Litheliidae by a convex-lens discoidal shape. The independency of Spongocyclia from Spongodiscus has long been in debate among authors of this paper. The view perpendicular to the equatorial plane of the disk-shaped shell is clearly different from that of the typical Spongodiscus as shown in the lower photo of the supporting image for Spongocyclia in the Atlas. This photo shows obvious concentric structures but no-spongy structure. Ommatodiscus has the same type species as Ommatodisculus. Campbell (1954: D92) indicated an elliptical disc with two pylomes for Ommatodiscus and a circular disk with two pylomes for Ommatodiscinus, but one opening only is recognizable on the type-illustrations of both these genera. The translated definition of Lithocarpium by Stöhr (1880: 97) from German mentioned “ an elliptical shell with a tubular peristome, and a circular opening with a corona of small teeth ”, and this explanation was insufficient to specify this genus. Worse, Campbell (1954: D119) wrongly classified Lithocarpium into the Nassellaria with a complete mismatched illustration of the nassellarian Carpocanium species on fig. 59.5. As any taxonomic act must be based on name-bearing specimens under ICZN (1999), the type-illustration prioritized the description.The type-illustration is surely different with a circular disk for Ommatodiscinus and an elliptical disk for Ommatodiscus, but this difference is too small to separate them independently. Lithocarpium looks to have a densely spiral concentric structure and a lobate shell according to Petrushevskaya (1975: 572). These three genera have one opening on one side but this opening does not form a true pylome (See the supporting image for Ommatodiscus in the Atlas). Such “pylome-structure” always opens on the outermost hard cortical shell (“crust” in the terminology of Ogane & Suzuki 2006) and it never penetrates inside the skeleton. In consideration of this character, no obvious differences can be found among Spongocyclia, Ommatodiscus, Ommatodiscinus and Lithocarpium. The oldest available name is Spongocyclia among them.

Notes

Published as part of Suzuki, Noritoshi, Caulet, Jean-Pierre & Dumitrica, Paulian, 2021, A new integrated morpho- and molecular systematic classification of Cenozoic radiolarians (Class Polycystinea) - suprageneric taxonomy and logical nomenclatorial acts, pp. 405-573 in Geodiversitas 43 (15) on pages 442-443, DOI: 10.5252/geodiversitas2021v43a15, http://zenodo.org/record/5101757

Files

Files (14.3 kB)

Name Size Download all
md5:b3577b859ea8dee830b52e7ad734b875
14.3 kB Download

System files (79.4 kB)

Name Size Download all
md5:d2e98512599ccd9e06053804493db4b5
79.4 kB Download

Linked records

Additional details

References

  • HAECKEL E. 1862. - Die Radiolarien (Rhizopoda Radiaria). Eine Monographie. Reimer, Berlin, 572 p. https: // doi. org / 10.5962 / bhl. title. 10155
  • MIVART S. G. 1878. - Notes touching recent researches on the Radiolaria. Journal of the Linnean Society, Zoology 14: 136 - 186. https: // doi. org / 10.1111 / j. 1096 - 3642.1878. tb 02351. x
  • BUTSCHLI O. 1889. - Kurze Ubersicht des Systems der Radiolaria, in BRONN H. G. & HOFFMANN C. K. (eds), Dr. H. G. Bronn's Klassen und Ordnungen des Thier-Reichs. Infusoria und System der Radiolaria, Band 1, Protozoa. Vol. 3. C. F. Winter'sche Verlagshandlung, Leipzig und Heidelberg: 1946 - 2004. https: // doi. org / 10.5962 / bhl. title. 14134
  • RUST D. 1892. - Beitrage zur Kenntnis der fossilen Radiolarien aus Gesteinen der Trias und der palaeozoischen Schichten. Palaeontographica 38: 107 - 179. https: // www. biodiversitylibrary. org / page / 33193870
  • SCHRODER O. 1909. - Die nordischen Spumellarian: Unterlegion Sphaerellaria, in BRANDT K. & APSTEIN C. (eds), Nordisches Plankton. Vol. 17. Lipsius und Tischer, Kiel and Leipzig, Germany: 1 - 66.
  • STOHR E. 1880. - Die Radiolarienfauna der Tripoli von Grotte, Provinz Girgenti in Sicilien. Palaeontographica 26: 71 - 124. https: // www. biodiversitylibrary. org / page / 33300080
  • HAECKEL E. 1887. - Report on the Radiolaria collected by H. M. S. Challenger during the years 1873 - 1876. Report on the Scientific Results of the Voyage of the H. M. S. Challenger, Zoology 18: clxxxviii + 1803. https: // www. biodiversitylibrary. org / page / 23487916
  • DREYER F. 1889. - Die Pylombildungen in vergleichend-anatomischer und entwicklungsgeschichtlicher Beziehung bei Radiolarien und bei Protisten uberhaupt. Jenaische Zeitschrift fur Naturwissenschaft 23: 77 - 214. https: // www. biodiversitylibrary. org / page / 11964620
  • CHEN M., ZHANG Q. & ZHANG L. 2017. - Radiolaria in the Sediments from the Northwest Pacific and its marginal seas. Scientific Publishing, Beijing, 1 - 279 p. [in Chinese]
  • HAECKEL E. 1882. - Entwurf eines Radiolarien-Systems auf Grund von Studien der Challenger-Radiolarien. Jenaische Zeitschrift fur Naturwissenschaft 15: 418 - 472. https: // www. biodiversitylibrary. org / page / 8700599
  • POPOFSKY A. 1908. - Die Radiolarien der Antarktis (mit Ausnahme der Tripyleen), in DRYGALSKI E. (ed.), Deutsche Sudpolar-Expedition, 1901 - 1903. Vol. 10. Georg Reimer, Berlin, Germany: 183 - 306. https: // www. biodiversitylibrary. org / page / 5955366
  • CHEDIYA D. M. 1959. - Obzor Sistematiki Radiolyarii, Tadzhikskii Gosudarstvennyi Universitet, Stalingrad, 330 and corrigenda p. [in Russian]
  • TAN Z. Y. & TCHANG T. R. 1976. - Studies on the Radiolaria of the East China Sea. II Spumellaria, Nassellaria, Phaeodaria, Sticholonchea. Studia marina sinica 11: 217 - 310. [in Chinese]
  • TAN Z. Y. & SU X. H. 1982. - Studies on the Radiolaria in sediments of the East China Sea (Continental Shelf). Studia marina sinica 19: 129 - 216. [in Chinese]
  • TOCHILINA S. V. 1985. - Biostratigraphy of the Cenozoic North-Western Pacific Ocean, in KRASILOV V. A. (ed.), Biostratigrafia kainozoia severo-zapadnoi chasti Tikhogo okeana. Nauka, Moscow, USSR: 1 - 133. [in Russian]
  • CHEN M. & TAN Z. 1996. - Radiolaria from Surface Sediments of the Central and Northern South China Sea. Scene Publishing House, Beijing, 271 p. [in Chinese]
  • TAN Z. Y. 1998. - Phylum Protozoa. Class Sacodina. Order Acantharia. Order Spumellaria, Fauna Sinica, Protozoa, 315 p. [in Chinese]
  • KOZLOVA G. E. 1999. - Paleogene Boreal Radiolarians from the Russia. Ministry of Natural resources of Russian Federation, All-Russian Petroleum research Exploration Institute (VNIGRI), Practical manual of microfauna, 393 p. [in Russian]
  • TAN Z. Y. & CHEN M. H. 1999. - Offshore Radiolaria in China. China. Scientific Publications, 1 - 404 p. [in Chinese]
  • POCHE F. 1913. - Das System der Protozoa. Archiv fur Protistenkunde 30: 125 - 321.
  • CAMPBELL A. S. 1954. - Radiolaria, in MOORE R. C. (ed.), Treatise on Invertebrate Paleontology. Vol. Part. D, Protista 3. Geological Society of America and University of Kansas Press, Lawrence / Kansas: 11 - 195.
  • RIEDEL W. R. 1967 b. - Some new families of Radiolaria. Proceedings of the geological Society of London 1640: 148 - 149.
  • NAKASEKO K., YAO A. & ICHIKAWA K. 1975. - Chapter 10. Protozoa. 4. Radiolaria, in TAKAYANAGI Y. & OMORI M. (eds), Particulars of Paleontology. Volume 2. Invertebrate Fossils 1. Vol. 2. Tsukiji Shokan, Tokyo: 154 - 185. [in Japanese]
  • PETRUSHEVSKAYA M. G. 1975. - Cenozoic radiolarians of the Antarctic, Leg 29, DSDP, in KENNET J. P., HOUTZ R. E. et al. (eds), Initial Reports of the Deep Sea Drilling Project. Vol. 29. U. S. Government Printing Office, Washington, D. C.: 541 - 675. https: // doi. org / 10.2973 / dsdp. proc. 29.114.1975
  • NAKASEKO K. & SUGANO K. 1976. - 7. Radiolaria, in ASANO K. (ed.), Micropaleontology. Vol. 1. Asakura Shoten, Tokyo: 67 - 137. [in Japanese]
  • DUMITRICA P. 1984. - Systematics of Sphaerellarian radiolarian, in PETRUSHEVSKAYA M. G. & STEPANJANTS S. D. (eds), Morphology, ecology and evolution of radiolarians. Material from the IV symposium of European radiolarists EURORAD IV. Akademiya Nauk SSSR, Zoological Institute, Leningrad, USSR: 91 - 102. [in Russian]
  • TAKAHASHI K. 1991. - Radiolaria: Flux, Ecology, and Taxonomy in the Pacific and Atlantic, in HONJO S. (ed.), Ocean Biocoenosis Series. Vol. 3. Woods Hole Oceanographic Institution, Woods Hole, Massachusetts: 1 - 303. https: // doi. org / 10.1575 / 1912 / 408
  • HOLLIS C. J. 1997. - Cretaceous-Paleocene Radiolaria from eastern Marlborough, New Zealand. Institute of geological and nuclear Sciences, Monograph 17: 1 - 152.
  • BOLTOVSKOY D. 1998. - Classification and distribution of south Atlantic recent polycystine Radiolaria. Palaeontologia Electronica 1 (2.6 A): https: // doi. org / 10.26879 / 98006
  • ANDERSON O. R., NIGRINI C., BOLTOVSKOY D., TAKAHASHI K. & SWANBERG N. R. 2002. - Class Polycystinea, in LEE J. J., LEEDALE G. F. & BRADBURY P. (eds), The Second Illustrated Guide to the Protozoa. Society of Protozoologists, Lawrence, Kansas: 994 - 1022.
  • DE WEVER P., DUMITRICA P., CAULET J. P., NIGRINI C. & CARIDROIT M. 2001. - Radiolarians in the sedimentary record, Amsterdam, 533 p. https: // doi. org / 10.1201 / 9781482283181
  • AFANASIEVA M. S., AMON E. O., AGARKOV Y. V. & BOLTOVSKOY D. S. 2005. - Radiolarians in the geological record. Paleontological Journal 39 (3, Suppl. S.): 135 - 392.
  • AFANASIEVA M. S. & AMON E. O. 2006. - Biotic crises and stages of radiolarian evolution in the Phanerozoic. Paleontological Journal 40 (4): S 453 - S 467. https: // doi. org / 10.1134 / S 0031030106100054
  • SUZUKI N., OGANE K. & CHIBA K. 2009 d. - Middle to Late Eocene polycystine radiolarians from the Site 1172, Leg 189, Southwest Pacific. News of Osaka Micropaleontologists, special Volume 14: 239 - 296.
  • CAMPBELL A. S. & CLARK B. L. 1944 a. - Radiolaria from Upper Cretaceous of Middle California. Geological Society of America, special Papers 57: 1 - 61. https: // doi. org / 10.1130 / SPE 57
  • FRIZZELL D. L. & MIDDOUR E. S. 1951. - Paleocene Radiolaria from southeastern Missouri. Bulletin of Missouri School of Mines and Metallurgy 77: 1 - 41.
  • KOZUR H. & MOSTLER H. 1978. - Beitrage zur Erforschung der mesozoischen Radiolarien Teil II: Oberfamilie Trematodiscacea HAECKEL 1862 emend. und Beschreibung ihrer triassischen Vertreter. Geologisch Palaontologische Mitteilungen Innsbruck 8: 123 - 182.
  • HAECKEL E. 1861 b. - Fernere Abbildungen und Diagnosen neuer Gattungen und Arten von lebenden Radiolarien des Mittel- meeres. Monatsberichte der Koniglich Preussischen Akademie der Wissenschaften zu Berlin (1860): 835 - 845. https: // www. biodiversitylibrary. org / page / 36276090
  • MATSUZAKI K. M., SUZUKI N. & NISHI H. 2015. - Middle to Upper Pleistocene Polycystine Radiolarians from Hole 902 - C 9001 C, Northwestern Pacific. Paleontological Research 19 (supplement 1): 1 - 77. https: // doi. org / 10.2517 / 2015 PR 003
  • KOZLOVA G. E. 1960. - Radiolarians of the Middle and Upper Miocene of Northern Sakhalin. Proceedings of the All Union Petroleum Scientific Research Institute for Geological Survey (VNIGRI) 153: 307 - 325. [in Russian]
  • CHEN P. H. 1974. - Some new Tertiary Radiolaria from Antarctic deep-sea sediments. Micropaleontology 20 (4): 480 - 492. https: // doi. org / 10.2307 / 1485135
  • WEAVER F. M. 1976. - Antarctic Radiolaria from the southeast Pacific basin, Deep Sea Drilling Project, Leg 35, in HOLLISTER C. D., CRADDOCK C. et al. (eds), Initial Reports of the Deep Sea Drilling Project. Vol. 35. U. S. Government Printing Office, Washington, D. C.: 569 - 603. https: // doi. org / 10.2973 / dsdp. proc. 35.135.1976
  • LAZARUS D., FAUST K. & POPOVA- GOLL I. 2005. - New species of prunoid radiolarians from the Antarctic Neogene. Journal of Micropalaeontology 24 (2): 97 - 121. https: // doi. org / 10.1144 / jm. 24.2.97
  • POPOVA I. M. 1991. - Stratigraphic value of some Theopiliinae and Larcoidea (Radiolaria), Paleontological and stratigraphic investigation of Phanerozoic in the Far Eastern Region (by the results of radiolarian analysis for mapping). Collected proceedings. Vol. 2. Academy of Science of the USSR Far Eastern Division. Pacific Oceanological Institute, Vladivostok: 104 - 110. [in Russian]
  • WEAVER F. M. 1975. - Correlation of Late Miocene-Early Pliocene radiolarian zones to the paleomagnetic time scale. Antarctic Journal of the United States 10 (5): 270 - 271.
  • O'CONNOR B. 1999. - Radiolaria from the Late Eocene Oamaru Diatomite, South Island, New Zealand. Micropaleontology 45 (1): 1 - 55. https: // doi. org / 10.2307 / 1486201
  • OGANE K. & SUZUKI N. 2006. - Morphological terms describing discoidal radiolarians. Revue de Micropaleontologie 49 (2): 97 - 104. https: // doi. org / 10.1016 / j. revmic. 2006.03.001
  • BARWICZ- PISKORZ W. 1999. - Badenian Radiolaria from the Krakow area (south Poland). Annales Societatis geologorum Poloniae 69 (3 - 4): 161 - 172. https: // geojournals. pgi. gov. pl / asgp / article / view / 12344 / 10818
  • JACKETT S. - J. & BAUMGARTNER P. O. 2007. - New imaging techniques applied to Paleogene radiolaria. Micropaleontology 53 (3): 239 - 247. https: // doi. org / 10.2113 / gsmicropal. 53.3.239
  • NISHIMURA A. 2001. - Paleocene Radiolarians from DSDP Leg 43, Site 384 in the Northwest Atlantic. News of Osaka Micropaleontologists, special Volume 12: 293 - 320. [in Japanese]
  • LI X., LI Y., WANG C. & MATSUOKA A. 2018. - Paleocene Radiolarian Faunas in the Deep-Marine Sediments Near Zhongba County, southern Tibet. Paleontological Research 22 (1): 37 - 56. https: // doi. org / 10.2517 / 2017 PR 009
  • SUZUKI N., OGAWA K., OGANE K. & TUJI A. 2013. - Patchwork silicification and disposal activity of siliceous fragments of a polycystine radiolarian. Revue de Micropaleontologie 56 (2): 63 - 74. https: // doi. org / 10.1016 / j. revmic. 2013.04.002
  • OGANE K., SUZUKI N., TUJI A. & HORI R. S. 2014. - Pseudopodial silica absorption hypothesis (PSA hypothesis): a new function of pseudopodia in living radiolarian polycystine cells. Journal of Micropalaeontology 33 (2): 143 - 148. https: // doi. org / 10.1144 / jmpaleo 2013 - 028
  • DUMITRICA P. 1973 b. - Cretaceous and Quaternary Radiolaria in deep sea sediments from the northeast Atlantic Ocean and Mediterranean Sea, in RYAN W. B. F., HSU K. J. et al. (eds), Initial Reports of the Deep Sea Drilling Project. Vol. 13. U. S. Government Printing Office, Washington, D. C.: 829 - 901. https: // doi. org / 10.2973 / dsdp. proc. 13.134 - 1.1973
  • MAMEDOV N. A. 1973. - New radiolarian species from the Eocene deposits of Azerbaidzhan. Izvestija Akademii Nauk Azerbaydzhanskoy SSR 2: 59 - 67. [in Russian]
  • POPOVA I. M. 1993. - Significance and paleoecological interpretations of early-middle Miocene radiolarians from south Sakhalin, Russia, in BLUEFORD J. R. & MURCHEY B. L. (eds), Micropaleontology, Special Publication. Vol. 6. Micropaleontology Press, American Museum of Natural History, New York: 161 - 174.