Published December 19, 2020 | Version v1
Journal article Open

Revisión sobre la ocurrencia de triclosán en aguas subterráneas y tendencias tecnológicas para su remoción

  • 1. Universidad Politécnica de Tlaxcala. Av. Universidad Politécnica No. 1, San Pedro Xalcaltzinco, Tepeyanco, Tlaxcala, México. CP 90180

Description

RESUMEN

Debido a la importancia como fuente de abastecimiento de agua potable, las aguas subterráneas deben garantizar seguridad en cuanto a su composición química. Sin embargo, en años recientes una gran cantidad de micro-contaminantes orgánicos tóxicos no regulados se han detectado en aguas subterráneas. El triclosán (TCS) es una sustancia desinfectante que debido a sus propiedades tóxicas y alta movilidad en el medio ambiente ha sido una molécula indicadora de procesos contaminantes de origen antropogénico. El análisis de estudios de monitoreo de contaminación de aguas subterráneas con triclosán muestra que su presencia en estas fuentes de agua potable se encuentra principalmente en zonas urbanas y en menor medida en zonas rurales. Y fundamentalmente, se debe a tres problemáticas: 1) la infiltración de aguas residuales domésticas sin tratamiento, 2) la infiltración de aguas residuales domésticas tratadas en cuyo tren de tratamiento no se contemplan operaciones avanzadas para la eliminación de micro-contaminantes orgánicos y 3) la infiltración de lixiviados provenientes de rellenos sanitarios. Las tecnologías más prometedoras para la remoción de triclosán de sistemas acuosos con bajo contenido de materia orgánica son: oxidación y oxidación avanzada, adsorción y biosorción, remoción metabólica microbiana, transformación enzimática y fitofiltración. La mayoría de los estudios para la remoción de triclosán se han realizado a nivel de laboratorio poniendo énfasis tanto en la eficiencia del proceso como en el mecanismo de remoción del contaminante, estos estudios son de gran importancia para el diseño de sistemas de tratamiento de aguas residuales y naturales.

 

ABSTRACT

According to the importance of a source of drinking water supply, groundwater must guarantee safety in terms of its chemical composition. However, in recent years a large amount of unregulated toxic organic micro-pollutants has been detected in groundwater. Triclosan (TCS) is a disinfectant substance and indicator molecule for anthropogenic origin polluting processes due to its toxic properties and high mobility in the environment. Studies of monitoring analysis for groundwater contamination with triclosan shows that its presence in drinking water sources is mainly found in urban areas and, to a lesser extent, in rural areas. The presence of TCS is fundamentally due to three problems: 1) infiltration of untreated domestic wastewater, 2) infiltration of treated domestic wastewater in where, treatment process does not include advanced operations to eliminate organic micro-pollutants, and 3) infiltration of leachate from sanitary landfills. The most promising technologies for triclosan removal from aqueous systems with low organic matter content are advanced oxidation and oxidation, adsorption and biosorption, microbial metabolic removal, enzymatic transformation, and phytofiltration. Many of the studies for triclosan removal have been carried out at the laboratory level emphasizing both the efficiency of the process and the pollutant removal mechanism, these studies are of great importance for the design of wastewater and natural water treatment systems.

Files

7) Netzahuatl-Muñoz 2020.pdf

Files (664.0 kB)

Name Size Download all
md5:e0e6e2b264970533898fb94af8c98107
664.0 kB Preview Download

Additional details

Related works

References

  • United Nations. Resolution A/RES/64/292. United Nations General Assembly: 2010
  • Office of the high commissioner for human rights. General Comment No. 15. The right to water. UN Committee on Economic, Social and Cultural Rights: 2002
  • Schmoll O, Howard G, Chilton J, Chorus I, editors. Protecting groundwater for health: managing the quality of drinking-water sources. World Health Organization: 2006.
  • CONAGUA. Estadísticas del agua en México, edición 2018. SEMARNAT: Ciudad de México 2018.
  • Jadhav S.V., Bringas E., Yadav G.D., Rathod V.K., Ortiz I., Marathe K.V. Arsenic and fluoride contaminated groundwaters: a review of current technologies for contaminants removal. Journal of Environ Manage 2015; 162:306-25.
  • Chatziefthimiou A.D., Metcalf J.S., Glover W.B., Banack S.A., Dargham S.R., Richer, R.A. Cyanobacteria and cyanotoxins are present in drinking water impoundments and groundwater wells in desert environments. Toxicon 2016; 114: 75-84.
  • Alvarez P.J., Illman W.A. Bioremediation and natural attenuation: process fundamentals and mathematical models (Vol. 27). John Wiley & Sons: 2005
  • World Health Organization. Guidelines for drinking-water quality (Vol. 1). World Health Organization: 2004.
  • Secretaría de salud. Modificación a la Norma Oficial Mexicana NOM-127-SSA1-1994. Salud ambiental, agua para uso y consumo humano. Límites permisibles de calidad y tratamientos a que debe someterse el agua para su potabilización. Secretaría de Salud. Diario Oficial de la Federación: Distrito Federal 2000.
  • Lapworth D.J., Baran N., Stuart M.E., Ward RS. Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environ Pollut 2012; 163: 287-303.
  • Postigo C., Barceló D. Synthetic organic compounds and their transformation products in groundwater: occurrence, fate and mitigation. Sci Total Environ 2015; 503: 32-47.
  • Gil M.J., Soto A.M., Usma J.I., Gutiérrez O.D. Contaminantes emergentes en aguas, efectos y posibles tratamientos. Producción + limpia 2012; 7(2): 52-73.
  • Gogoi A., Mazumder P., Tyagi V.K., Chaminda G.T., An A.K., Kumar M. Occurrence and fate of emerging contaminants in water environment: A review. Ground Sustain Dev 2018; 6: 169-180.
  • Lamastra L., Balderacchi M., Trevisan M. Inclusion of emerging organic contaminants in groundwater monitoring plans. MethodsX 2016; 3: 459-476.
  • Stuart M., Lapworth D., Crane E., Hart A. Review of risk from potential emerging contaminants in UK groundwater. Sci Total Environ 2012; 416, 1-21.
  • Gavrilescu M., Demnerová K., Aamand J., Agathos S., Fava F. Emerging pollutants in the environment: present and future challenges in biomonitoring, ecological risks and bioremediation. N Biotechnol 2015; 32(1): 147-156.
  • Montes-Grajales D., Fennix-Agudelo M., Miranda-Castro W. Occurrence of personal care products as emerging chemicals of concern in water resources: A review. Sci Total Environ 2017; 595: 601-614.
  • Noguera-Oviedo K., Aga D.S. Lessons learned from more than two decades of research on emerging contaminants in the environment. J Hazard Mater 2016; 316: 242-251.
  • Kosek K., Luczkiewicz A., Fudala-Książek S., Jankowska K., Szopińska M., Svahn O., et. al. (2020). Implementation of advanced micropollutants removal technologies in wastewater treatment plants (WWTPs)-Examples and challenges based on selected EU countries. Environ Sci Policy 2020; 112: 213-226.
  • Bhargava H.N., Leonard P.A. Triclosan: applications and safety. Am J Infect Control 1996; 24(3): 209-218.
  • Zúñiga Carrasco I.R., Caro Lozano J. Controversia por el uso de triclosán en los productos antibacteriales de uso común. Rev Latinoam Infect Pediátr 2017; 30(3): 93-96.
  • Olaniyan L.W.B., Mkwetshana N., Okoh A.I. Triclosan in water, implications for human and environmental health. Springerplus 2016; 5(1): 1639.
  • Juliano C., Magrini G. Cosmetic ingredients as emerging pollutants of environmental and health concern. A mini-review. Cosmetics 2017; 4(2): 11.
  • Bedoux G., Roig B., Thomas O., Dupont V., Le Bot B. Occurrence and toxicity of antimicrobial triclosan and by-products in the environment. Environ Sci Pollut Res 2012; 19(4): 1044-1065.
  • Nishi I., Kawakami T., Onodera, S. Monitoring of triclosan in the surface water of the Tone Canal, Japan. Bull Environ Contam Toxicol 2008; 80(2): 163-166.
  • Dhillon G., Kaur S., Pulicharla R., Brar S., Cledón M., Verma M., Surampalli R. Triclosan: current status, occurrence, environmental risks and bioaccumulation potential. Int J Environ Res Public Health 2015; 12(5): 5657-5684.
  • von der Ohe P.C., Schmitt-Jansen M., Slobodnik J., Brack W. Triclosan—the forgotten priority substance? Environ Sci Pollut Res 2012; 19(2): 585-591.
  • Drury B., Scott J., Rosi-Marshall E.J., Kelly J.J. Triclosan exposure increases triclosan resistance and influences taxonomic composition of benthic bacterial communities. Environ Sci Technol 2013; 47(15): 8923-8930.
  • Wang C.F., Tian Y. Reproductive endocrine-disrupting effects of triclosan: Population exposure, present evidence and potential mechanisms. Environ Pollut 2015; 206: 195-201.
  • Braun J.M., Chen A., Hoofnagle A., Papandonatos G.D., Jackson-Browne M., Hauser R., et. al. Associations of early life urinary triclosan concentrations with maternal, neonatal, and child thyroid hormone levels. Horm Behav, 2018; 101: 77-84.
  • Jackson-Browne M.S., Papandonatos G.D., Chen A., Yolton K., Lanphear B.P., Braun J.M. Early-life triclosan exposure and parent-reported behavior problems in 8-year-old children. Environ Int 2019; 1(128): 446-456
  • Li Q., Yu J., Chen W., Ma X., Li G., Chen G., Deng J. Degradation of triclosan by chlorine dioxide: Reaction mechanism, 2,4- dichlorophenol accumulation and toxicity evaluation. Chemosphere 2018; 207: 449-456.
  • Li H., Zhang X., Qiu Q., An Z., Qi Y., Huang D., et. al. 2, 4-Dichlorophenol induces apoptosis in primary hepatocytes of grass carp (Ctenopharyngodon idella) through mitochondrial pathway. Aquat Toxicol 2013; 140, 117-122.
  • Chen X., Richard J., Liu Y., Dopp E., Tuerk J., Bester K., Ozonation products of triclosan in advanced wastewater treatment. Water Res 2012; 46: 2247-2256.
  • Solá-Gutiérrez C., Schröder S., San-Román M.F., Ortiz I. Critical review on the mechanistic photolytic and photocatalytic degradation of triclosan. J Environ Manage 2020; 260, 110101.
  • Environmental Protection Agency. Polychlorinated Dibenzo-p-dioxins and Related Compounds Update: Impact on Fish Advisories. EPA-823-F-99-015. EPA: 1999
  • International Agency for Research on Cancer. Polychlorinated dibenzo-para-dioxins and polychlorinated dibenzofurans. IARC monographs on the evaluation of carcinogenic risks to humans, 69. IARC: 1997.
  • Rodriguez-Narvaez O.M., Peralta-Hernandez J.M., Goonetilleke A., Bandala E.R. Treatment technologies for emerging contaminants in water: A review. Chem Eng J 2017; 323: 361-380.
  • Silva C.P., Jaria G., Otero M., Esteves V.I., Calisto V. Waste-based alternative adsorbents for the remediation of pharmaceutical contaminated waters: Has a step forward already been taken? Bioresour Technol 2018; 250: 888-901.
  • Sophia A.C. Lima E.C. Removal of emerging contaminants from the environment by adsorption. Ecotoxicol Environ Saf 2018; 150: 1-17.
  • Barrios-Estrada C., de Jesús Rostro-Alanis M., Muñoz-Gutiérrez B.D., Iqbal H.M., Kannan S., Parra-Saldivar R. Emergent contaminants: endocrine disruptors and their laccase-assisted degradation–a review. Sci Total Environ 2018; 612: 1516-1531.
  • Glassmeyer S.T., Furlong E.T., Kolpin D.W., Batt A.L., Benson R., Boone J.S., et. al. Nationwide reconnaissance of contaminants of emerging concern in source and treated drinking waters of the United States. Sci Total Environ 2017; 581: 909-922.
  • Rasheed T., Bilal M., Nabeel F., Adeel M., Iqbal H.M. Environmentally-related contaminants of high concern: Potential sources and analytical modalities for detection, quantification, and treatment. Environ Int 2019; 122: 52-66.
  • Lee C.M., Hamm S.Y., Yun S.M., Oh J.E., Kim M., Kim H. Indication of groundwater contamination using acesulfame and other pollutants in a rural area of Korea. Water 2018; 10(12): 1731.
  • Lapworth D.J., Baran N., Stuart M.E., Manamsa K., Talbot J. Persistent and emerging micro-organic contaminants in Chalk groundwater of England and France. Environ Pollut 2015; 203: 214-225.
  • Lopez B., Ollivier P., Togola A., Baran N., Ghestem J.P. Screening of French groundwater for regulated and emerging contaminants. Sci Total Environ 2015; 518: 562-573.
  • Turner R.D., Warne M.S.J., Dawes L.A., Thompson K., Will G.D. Greywater irrigation as a source of organic micro-pollutants to shallow groundwater and nearby surface water. Sci Total Environ 2019; 669: 570-578.
  • Teijon G., Candela L., Tamoh K., Molina-Díaz A., Fernández-Alba A.R. Occurrence of emerging contaminants, priority substances (2008/105/CE) and heavy metals in treated wastewater and groundwater at Depurbaix facility (Barcelona, Spain). Sci Total Environ 2010; 408(17): 3584-3595.
  • Brueller W., Inreiter N., Boegl T., Rubasch M., Saner S., Humer F., et. al. Occurrence of chemicals with known or suspected endocrine disrupting activity in drinking water, groundwater and surface water, Austria 2017/2018. Die Bodenkultur: J Land Manag, Food Environ 2018; 69(3): 155-173.
  • Sorensen J.P.R., Lapworth D.J., Nkhuwa, D.C.W., Stuart M.E., Gooddy D.C., Bell R.A., et. al. Emerging contaminants in urban groundwater sources in Africa. Water Res 2015; 72: 51-63.
  • Karnjanapiboonwong A., Suski J.G., Shah A.A., Cai Q., Morse A.N., Anderson T.A. Occurrence of PPCPs at a wastewater treatment plant and in soil and groundwater at a land application site. Water Air Soil Pollut 2011; 216(1-4): 257-273.
  • Gibson R., Durán-Álvarez J.C., Estrada K.L., Chávez A., Cisneros B.J. Accumulation and leaching potential of some pharmaceuticals and potential endocrine disruptors in soils irrigated with wastewater in the Tula Valley, Mexico. Chemosphere. 2010; 81(11): 1437-1445.
  • Félix-Cañedo T.E., Durán-Álvarez, J.C., Jiménez-Cisneros, B. The occurrence and distribution of a group of organic micropollutants in Mexico City's water sources. Sci Total Environ 2013; 454: 109-118.
  • Peng X., Ou W., Wang C., Wang Z., Huang Q., Jin J., Tan J. Occurrence and ecological potential of pharmaceuticals and personal care products in groundwater and reservoirs in the vicinity of municipal landfills in China. Sci Total Environ 2014; 490: 889-898.
  • Yang Y.Y., Zhao J.L., Liu Y.S., Liu W.R., Zhang, Q.Q., Yao, L., et. al. Pharmaceuticals and personal care products (PPCPs) and artificial sweeteners (ASs) in surface and ground waters and their application as indication of wastewater contamination. Sci Total Environ 2018; 616: 816-823.
  • Sharma B.M., Bečanová J., Scheringer M., Sharma A., Bharat G.K., Whitehead P.G., et.al. Health and ecological risk assessment of emerging contaminants (pharmaceuticals, personal care products, and artificial sweeteners) in surface and groundwater (drinking water) in the Ganges River Basin, India. Sci Total Environ 2019; 646: 1459-1467.
  • Kapelewska J., Kotowska U., Karpińska J., Kowalczuk D., Arciszewska A., & Świrydo A. Occurrence, removal, mass loading and environmental risk assessment of emerging organic contaminants in leachates, groundwaters and wastewaters. Microchem J 2018; 137: 292-301.
  • Gao Q., Blum K.M., Gago-Ferrero P., Wiberg K., Ahrens L., Andersson PL. Impact of on-site wastewater infiltration systems on organic contaminants in groundwater and recipient waters. Sci Total Environ 2019; 651: 1670-1679.
  • Palmiotto M., Castiglioni S., Zuccato E., Manenti A., Riva F., Davoli E. Personal care products in surface, ground and wastewater of a complex aquifer system, a potential planning tool for contemporary urban settings. J Environ Manage 2018; 214: 76-85.
  • Loos R., Locoro G., Comero S., Contini S., Schwesig D., Werres F., et. al. Pan-European survey on the occurrence of selected polar organic persistent pollutants in ground water. Water Res 2010, 44(14), 4115-4126.
  • Montagner C.C., Sodré F.F., Acayaba R.D., Vidal C., Campestrini I., Locatelli M.A., et. al. Ten Years-Snapshot of the Occurrence of Emerging Contaminants in Drinking, Surface and Ground Waters and Wastewaters from São Paulo State, Brazil. J. Braz. Chem. Soc 2019; 30(3): 614-632.
  • Lee H.J., Kim K.Y., Hamm S.Y., Kim M., Kim H.K., Oh J.E. Occurrence and distribution of pharmaceutical and personal care products, artificial sweeteners, and pesticides in groundwater from an agricultural area in Korea. Sci Total Environ 2019; 659: 168-176.
  • Tchobanoglous G., Stensel H.D., Tsuchihashi R., Burton F., Abu-Orf M., Bowden G., et. al. Waterwater Engineering: Treatment and Resource Recovery, Metcalf and Eddy Inc: 2014.
  • Couto C.F., Lange L.C., Amaral M.C. 2019. Occurrence, fate and removal of pharmaceutically active compounds (PhACs) in water and wastewater treatment plants—A review. J Water Process Eng 2019; 32: 100927.
  • Di Marcantonio C., Chiavola A., Dossi S., Cecchini G., Leoni S., Frugis A., et. al. Occurrence, seasonal variations and removal of Organic Micropollutants in 76 Wastewater Treatment Plants. Process Saf Environ Prot 2020; 141: 61-72.
  • Quan B., Li X., Zhang H., Zhang C., Ming Y., Huang Y., et. al. Technology and principle of removing triclosan from aqueous media: A review. Chem Eng J 2019; 378: 122185.
  • Arzate S., Pfister S., Oberschelp C., Sánchez-Pérez J.A. Environmental impacts of an advanced oxidation process as tertiary treatment in a wastewater treatment plant. Sci Total Environ 2019; 694: 133572.
  • Bui X.T., Vo T.P.T., Ngo H.H., Guo W.S., Nguyen T.T. Multicriteria assessment of advanced treatment technologies for micropollutants removal at large-scale applications. Sci Total Environ 2016; 563: 1050-1067.
  • Park K.Y., Choi S.Y., Lee S.H., Kweon J.H., Song J.H. Comparison of formation of disinfection by-products by chlorination and ozonation of wastewater effluents and their toxicity to Daphnia magna. Environ Pollut 2016; 215: 314-321.
  • Orhon K.B., Orhon A.K., Dilek F.B., Yetis U. Triclosan removal from surface water by ozonation-kinetics and by-products formation. J Environ Manage 2017; 204: 327-336.
  • Chen J., Qu R., Pan X., Wang Z. Oxidative degradation of triclosan by potassium permanganate: kinetics, degradation products, reaction mechanism, and toxicity evaluation. Water Res 2016; 103; 215-223.
  • Gayaa U.I., Abdullaha A.H. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. J Photochem Photobiol C Photochem Rev, 2008; 9: 1-12.
  • Nevárez-Martínez M.C., Espinoza-Montero P.J., Quiroz-Chávez F.J., Ohtani B. Fotocatálisis: inicio, actualidad y perspectivas a través del TiO2. Avances en Química 2015, 12(2-3), 45-59.
  • Byrne C., Subramanian G., Pillai S.C. Recent advances in photocatalysis for environmental applications. J Environ Chem Eng 2018; 6(3): 3531-3555.
  • Rueda-Marquez J.J., Levchuk I., Ibañez P.F., Sillanpää M. A critical review on application of photocatalysis for toxicity reduction of real wastewaters. J Clean Prod 2020; 120694.
  • Yu M., Wang J., Tang L., Feng C., Liu H., Zhang H., et. al Intimate coupling of photocatalysis and biodegradation for wastewater treatment: Mechanisms, recent advances and environmental applications. Water Res 2020; 115673.
  • Kosera V.S., Cruz T.M., Chaves E.S., Tiburtius E.R. Triclosan degradation by heterogeneous photocatalysis using ZnO immobilized in biopolymer as catalyst. J Photochem Photobiol A Chem 2017, 344, 184-191.
  • Constantin L.A., Nitoi I., Cristea N.I., Constantin M.A. Possible degradation pathways of triclosan from aqueous systems via TiO2 assisted photocatalyis. J Ind Eng Chem 2018; 58: 155-162.
  • Cervantes R.N., Hammoudab S.B., Sillanpääb M., Escobar B.V. Enhanced photocatalytic performance of zinc oxide nanostructures via photoirradiation hybridisation with grapheme oxide for the degradation of triclosan under visible light: Synthesis, characterisation and mechanistic study. Journal of Environ Chem Eng 2018; 6: 6554–6567.
  • Peng J., Shi H., Li J., Wang L., Wang Z., Gao S. Bicarbonate enhanced removal of triclosan by copper (II) catalyzed Fenton-like reaction in aqueous solution. Chem Eng J 2016; 306: 484-491.
  • Gao H., Chen J., Zhang Y., Zhou X. Sulfate radicals induced degradation of Triclosan in thermally activated persulfate system. Chem Eng J 2016; 306: 522-530.
  • Yuval A., Eran F., Janin W., Oliver O., Yael D. Photodegradation of micropollutants using V-UV/UV-C processes; Triclosan as a model compound. Sci Total Enviro 2017; 601: 397-404.
  • Wang S., Wang J. Activation of peroxymonosulfate by sludge-derived biochar for the degradation of triclosan in water and wastewater. Chem Eng J 2019; 356: 350-358.
  • Ren Y.Z., Franke M., Anschuetz F., Ondruschka B., Ignaszak A., Braeutigam P. Sonoelectrochemical degradation of triclosan in water. Ultrason Sonochem 2014; 21(6): 2020-2025.
  • Xin L., Sun Y., Feng J., Wang J., He D. Degradation of triclosan in aqueous solution by dielectric barrier discharge plasma combined with activated carbon fibers. Chemosphere 2016; 144: 855-863.
  • Gao Y., Yue Q., Gao B., Li A. Insight into activated carbon from different kinds of chemical activating agents: A review. Sci Total Environ 2020; 141094.
  • Mohan D., Pittman Jr C.U. Activated carbons and low cost adsorbents for remediation of tri-and hexavalent chromium from water. J Hazard Mater 2016; 137(2): 762-811.
  • Michalak I., Chojnacka K., Witek-Krowiak A. State of the art for the biosorption process—a review. Appl Biochem Biotechnol 2013; 170(6): 1389-1416.
  • Singh S., Kumar V., Datta S., Dhanjal D.S., Sharma K., Samuel J., Singh J. Current advancement and future prospect of biosorbents for bioremediation. Sci Total Environ 2020; 709; 135895.
  • Viancelli A., Michelon W., Rogovski P., Cadamuro R.D., de Souza E.B., Fongaro G., et.al. A review on alternative bioprocesses for removal of emerging contaminants. Bioprocess Biosyst Eng 2020; in press.
  • Zhou Y., Zhang L., Cheng Z. Removal of organic pollutants from aqueous solution using agricultural wastes: a review. J Mol Liq 2015; 212: 739-762.
  • Netzahuatl-Muñoz, A.R., Cristiani-Urbina, M.d.C., Cristiani-Urbina, E. Chromium biosorption from Cr (VI) aqueous solutions by Cupressus lusitanica bark: Kinetics, equilibrium and thermodynamic studies. PLoS One 2015; 10(9): e0137086.
  • Volesky B. Sorption and biosorption, BV Sorbex. Inc: St. Lambert, Quebec 2003.
  • Kaur H., Hippargi G., Pophali G.R., Bansiwal A. Biomimetic lipophilic activated carbon for enhanced removal of triclosan from water. J Colloid Interface Sci 2019; 535: 111-121.
  • Katsigiannis A., Noutsopoulos C., Mantziaras J., Gioldasi M. Removal of emerging pollutants through granular activated carbon. Chem Eng J 2015; 280: 49-57.
  • Sharipova A.A., Aidarova S.B., Bekturganova N.Y., Tleuova A., Kerimkulova M., Yessimova O., et.al. Triclosan adsorption from model system by mineral sorbent diatomite. Colloids Surf A Physicochem Eng Asp 2017; 532: 97-101.
  • Tohidi F., Cai Z. Adsorption isotherms and kinetics for the removal of triclosan and methyl triclosan from wastewater using inactivated dried sludge. Process Biochem, 2016; 51(8): 1069-1077.
  • Santaeufemia S., Abalde J., Torres E. Eco-friendly rapid removal of triclosan from seawater using biomass of a microalgal species: Kinetic and equilibrium studies. J Hazard Mater 2019; 369: 674-683.
  • Tarpani R.R.Z., Azapagic A. Life cycle costs of advanced treatment techniques for wastewater reuse and resource recovery from sewage sludge. J Clean Prod 2018; 204: 832-847.
  • Silva A., Delerue-Matos C., Figueiredo S.A., Freitas O.M. The use of algae and fungi for removal of pharmaceuticals by bioremediation and biosorption processes: A review. Water 2019; 11(8): 1555.
  • Mir-Tutusaus J.A., Baccar R., Caminal G., Sarrà, M. Can white-rot fungi be a real wastewater treatment alternative for organic micropollutants removal? A review. Water Res 2018; 138: 137-151.
  • Hena S., Gutierrez L., Croué, J.P. Removal of pharmaceutical and personal care products (PPCPs) from wastewater using microalgae: A review. J Hazar Mater 2021; 403: 124041.
  • Tolboom S.N., Carrillo-Nieves D., de Jesús Rostro-Alanis M., de la Cruz Quiroz R., Barceló D., Iqbal H.M., Parra-Saldivar R. Algal-based removal strategies for hazardous contaminants from the environment–A review. Sci Total Environ 2019; 665: 358-366.
  • Wang S., Poon K., Cai Z. Removal and metabolism of triclosan by three different microalgal species in aquatic environment. J Hazard Mater 2018; 342: 643-650.
  • Bai X., Acharya K. Removal of seven endocrine disrupting chemicals (EDCs) from municipal wastewater effluents by a freshwater green alga. Environ Pollut 2019; 247: 534-540.
  • Ding T., Lin K., Bao L., Yang M., Li J., Yang B., Gan J. Biouptake, toxicity and biotransformation of triclosan in diatom Cymbella sp. and the influence of humic acid. Environ Pollut 2018; 234: 231-242.
  • Chai W.S., Tan W.G., Munawaroh H.S.H., Gupta V.K., Ho S.H., Show P.L. Multifaceted roles of microalgae in the application of wastewater biotreatment: A review. Environ Pollut 2020; 116236.
  • Vassalle L., Sunyer-Caldú A., Uggetti E., Díez-Montero R., Díaz-Cruz M.S., García J., et. al. Bioremediation of emerging micropollutants in irrigation water. The alternative of microalgae-based treatments. J Environ Manage 2020; 274: 111081.
  • Muñoz R., Guieysse B. Algal–bacterial processes for the treatment of hazardous contaminants: a review. Water Res 2006; 40(15): 2799-2815.
  • Unuofin J.O., Okoh A.I., Nwodo U.U. Aptitude of oxidative enzymes for treatment of wastewater pollutants: a laccase perspective. Molecules 2019; 24(11), 2064.
  • Morsi R., Bilal M., Iqbal H.M., Ashraf S.S. Laccases and peroxidases: The smart, greener and futuristic biocatalytic tools to mitigate recalcitrant emerging pollutants. Sci Total Environ, 2020; 714: 136572.
  • Nguyen L.N., Hai F.I., Yang S., Kang J., Leusch F.D., Roddick F., et. al. Removal of pharmaceuticals, steroid hormones, phytoestrogens, UV-filters, industrial chemicals and pesticides by Trametes versicolor: role of biosorption and biodegradation. Int Biodeterior Biodegradation 2014; 88:169-175.
  • Daronch N.A., Kelbert M., Pereira C.S., de Araújo P.H.H., de Oliveira D. Elucidating the choice for a precise matrix for laccase immobilization: a review. Chem Eng J, 2020; 397:125506.
  • Le T.T., Murugesan K., Lee C.S., Vu C.H., Chang Y.S., Jeon J.R. Degradation of synthetic pollutants in real wastewater using laccase encapsulated in core–shell magnetic copper alginate beads. Bioresour Technol 2016; 216: 203-210.
  • Sun K., Kang F., Waigi M.G., Gao Y., Huang Q. Laccase-mediated transformation of triclosan in aqueous solution with metal cations and humic acid. Environ Pollut 2017; 220: 105-111.
  • Dou R.N., Wang J.H., Chen Y.C., Hu Y.Y. The transformation of triclosan by laccase: Effect of humic acid on the reaction kinetics, products and pathway. Environ Pollut 2018; 234: 88-95.
  • Garcia-Morales R., Rodríguez-Delgado M., Gomez-Mariscal K., Orona-Navar C., Hernandez-Luna C., Torres E., et. al. Biotransformation of endocrine-disrupting compounds in groundwater: bisphenol A, nonylphenol, ethynylestradiol and triclosan by a laccase cocktail from Pycnoporus sanguineus CS43. Water Air Soil Pollut 2015; 226(8): 251.
  • Xu R., Si Y., Wu X., Li F., Zhang B. Triclosan removal by laccase immobilized on mesoporous nanofibers: strong adsorption and efficient degradation. Chem Eng J 2014; 255: 63-70.
  • Ali H., Khan E., Sajad M.A. Phytoremediation of heavy metals—concepts and applications. Chemosphere 2013; 91(7): 869-881.
  • Rajkumar M., Sandhya S., Prasad M.N.V., Freitas H. Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 2012; 30(6): 1562-1574.
  • Maucieri C., Barbera A.C., Vymazal J., Borin M. A review on the main affecting factors of greenhouse gases emission in constructed wetlands. Agric For Meteorol 2017; 236: 175-193.
  • Liu R., Zhao Y., Doherty L., Hu Y., Hao X. A review of incorporation of constructed wetland with other treatment processes. Chem Eng J 2015; 279: 220-230.
  • Tournebize J., Chaumont C., Mander Ü. Implications for constructed wetlands to mitigate nitrate and pesticide pollution in agricultural drained watersheds. Ecol Eng 2017; 103: 415-425.
  • Zhang D., Gersberg R.M., Ng W.J., Tan S.K. Removal of pharmaceuticals and personal care products in aquatic plant-based systems: a review. Environ Pollut 2014; 184: 620-639.
  • Nivala J., Headley T., Wallace S., Bernhard K., Brix H., van Afferden M., Müller, R.A. Comparative analysis of constructed wetlands: the design and construction of the ecotechnology research facility in Langenreichenbach, Germany. Ecol Eng 2013; 61: 527-543.
  • Zhao C., Xie H., Xu J., Zhang J., Liang S., Hao J., et. al. Removal mechanisms and plant species selection by bioaccumulative factors in surface flow constructed wetlands (CWs): in the case of triclosan. Sci Total Environ 2016; 547: 9-16.
  • Wang Y., Yin T., Kelly B.C., Gin K.Y.H. Bioaccumulation behaviour of pharmaceuticals and personal care products in a constructed wetland. Chemosphere 2019; 222: 275-285.
  • Xie H., Yang Y., Liu J., Kang Y., Zhang J., Hu Z., et. al. Enhanced triclosan and nutrient removal performance in vertical up-flow constructed wetlands with manganese oxides. Water Res 2018; 143: 457-466.
  • Pi N., Ng J.Z., Kelly B.C. Bioaccumulation of pharmaceutically active compounds and endocrine disrupting chemicals in aquatic macrophytes: Results of hydroponic experiments with Echinodorus horemanii and Eichhornia crassipes. Sci Total Environ 2017; 601: 812-820.
  • Li J., Zhou Q., Campos L.C. Removal of selected emerging PPCP compounds using greater duckweed (Spirodela polyrhiza) based lab-scale free water constructed wetland. Water Res 2017; 126: 252-261.
  • Button M., Cosway K., Sui J., Weber K. Impacts and fate of triclosan and sulfamethoxazole in intensified re-circulating vertical flow constructed wetlands. Sci Total Environ 2019; 649: 1017-1028.
  • He Y., Nie E., Li C., Ye Q., Wang H. Uptake and subcellular distribution of triclosan in typical hydrophytes under hydroponic conditions. Environ Pollut 2017; 220: 400-406.