There is a newer version of the record available.

Published December 11, 2020 | Version 27
Dataset Open

BIP4COVID19: Impact metrics and indicators for coronavirus related publications

Description

This dataset contains impact metrics and indicators for a set of publications that are related to the COVID-19 infectious disease and the coronavirus that causes it. It is based on:

  1. Τhe CORD-19 dataset released by the team of Semantic Scholar1 and
  2. Τhe curated data provided by the LitCovid hub2.

These data have been cleaned and integrated with data from COVID-19-TweetIDs and from other sources (e.g., PMC). The result was dataset of 219,652 unique articles along with relevant metadata (e.g., the underlying citation network). We utilized this dataset to produce, for each article, the values of the following impact measures:

  • Influence: Citation-based measure reflecting the total impact of an article. This is based on the PageRank3 network analysis method. In the context of citation networks, it estimates the importance of each article based on its centrality in the whole network. This measure was calculated using the PaperRanking (https://github.com/diwis/PaperRanking) library4.
  • Popularity: Citation-based measure reflecting the current impact of an article. This is based on the AttRank5 citation network analysis method. Methods like PageRank are biased against recently published articles (new articles need time to receive their first citations). AttRank alleviates this problem incorporating an attention-based mechanism, akin to a time-restricted version of preferential attachment, to explicitly capture a researcher's preference to read papers which received a lot of attention recently. This is why it is more suitable to capture the current "hype" of an article.
  • Popularity alternative: An alternative citation-based measure reflecting the current impact of an article (this was the basic popularity measured provided by BIP4COVID19 until version 26). This is based on the RAM6 citation network analysis method. Methods like PageRank are biased against recently published articles (new articles need time to receive their first citations). RAM alleviates this problem using an approach known as "time-awareness". This is why it is more suitable to capture the current "hype" of an article. This measure was calculated using the PaperRanking (https://github.com/diwis/PaperRanking) library4.
  • Social Media Attention: The number of tweets related to this article. Relevant data were collected from the COVID-19-TweetIDs dataset. In this version, tweets between 1/11-6/11 have been considered from the previous dataset. 

We provide four CSV files, all containing the same information, however each having its entries ordered by a different impact measure. All CSV files are tab separated and have the same columns (PubMed_id, PMC_id, DOI, influence_score, popularity_alt_score, popularity score, tweets count).

The work is based on the following publications:

  1. COVID-19 Open Research Dataset (CORD-19). 2020. Version 2020-11-28 Retrieved from https://pages.semanticscholar.org/coronavirus-research. Accessed 2020-11-28. doi:10.5281/zenodo.3715506
  2. Chen Q, Allot A, & Lu Z. (2020) Keep up with the latest coronavirus research, Nature 579:193 (version 2020-11-28)
  3. R. Motwani L. Page, S. Brin and T. Winograd. 1999. The PageRank Citation Ranking: Bringing Order to the Web. Technical Report. Stanford InfoLab.
  4. I. Kanellos, T. Vergoulis, D. Sacharidis, T. Dalamagas, Y. Vassiliou: Impact-Based Ranking of Scientific Publications: A Survey and Experimental Evaluation. TKDE 2019
  5. I. Kanellos, T. Vergoulis, D. Sacharidis, T. Dalamagas, Y. Vassiliou: Ranking Papers by their Short-Term Scientific Impact. CoRR abs/2006.00951 (2020)
  6. Rumi Ghosh, Tsung-Ting Kuo, Chun-Nan Hsu, Shou-De Lin, and Kristina Lerman. 2011. Time-Aware Ranking in Dynamic Citation Networks. In Data Mining Workshops (ICDMW). 373–380

A Web user interface that uses these data to facilitate the COVID-19 literature exploration, can be found here. More details in our preprint here.

It should be noted that this version contains an extra impact measure (AttRank). In addition, from now on, this measure will be used as the basic popularity measure (instead of TAR). TAR is provided as the popularity alternative measure. 

IMPORTANT: The structure of the file is different now (see details above).

Terms of use: These data are provided "as is", without any warranties of any kind. The data are provided under the Creative Commons Attribution 4.0 International license.

Notes

We acknowledge support of this work by the project "Moving from Big Data Management to Data Science" (MIS 5002437/3) which is implemented under the Action "Reinforcement of the Research and Innovation Infrastructure", funded by the Operational Programme "Competitiveness, Entrepreneurship and Innovation" (NSRF 2014-2020) and co-financed by Greece and the European Union (European Regional Development Fund).

Files

articles_by_influence.csv

Files (76.2 MB)

Name Size Download all
md5:b72234d6fb38917a2271a9e5af1353b7
19.1 MB Preview Download
md5:6a773cdb25d8bc5e1fb94ae939decdf9
19.1 MB Preview Download
md5:5a6590d5d1d06717fec42087268ae3fd
19.1 MB Preview Download
md5:4731f9ce1aebaa368949cdb8e9810d3c
19.1 MB Preview Download

Additional details

References

  • COVID-19 Open Research Dataset (CORD-19). 2020. Version 2020-12-06. Retrieved from https://pages.semanticscholar.org/coronavirus-research. Accessed 2020-12-06.
  • I. Kanellos, T. Vergoulis, D. Sacharidis, T. Dalamagas, Y. Vassiliou: Impact-Based Ranking of Scientific Publications: A Survey and Experimental Evaluation. TKDE 2019
  • I. Kanellos, T. Vergoulis, D. Sacharidis, T. Dalamagas, Y. Vassiliou: Ranking Papers by their Short-Term Scientific Impact. CoRR abs/2006.00951 (2020)
  • Rumi Ghosh, Tsung-Ting Kuo, Chun-Nan Hsu, Shou-De Lin, and Kristina Lerman. 2011. Time-Aware Ranking in Dynamic Citation Networks. In Data Mining Workshops (ICDMW). 373–380
  • R. Motwani L. Page, S. Brin and T. Winograd. 1999. The PageRank Citation Ranking: Bringing Order to the Web. Technical Report. Stanford InfoLab.
  • Chen Q, Allot A, & Lu Z. (2020) Keep up with the latest coronavirus research, Nature 579:193 (version 2020-12-06)