Research Article
BibTex RIS Cite

Chemical Screening and Antibacterial Activity of Crude Extracts of Chlorella sp. in Culture

Year 2023, Volume: 43 Issue: 2, 111 - 119, 01.06.2023
https://doi.org/10.52794/hujpharm.1102486

Abstract

In this study, the antibacterial activity of methanol and acetone extracts of Chlorella sp. was examined. The chemical contents of the extracts were clarified by GC/MS analysis. Antibacterial activity of Chlorella sp. extracts was determined as a minimum inhibitory concentration by broth microdilution method against Bacillus subtilis ATCC 6633, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus ATCC 29213. It was found that methanol and acetone extracts of Chlorella sp. showed antibacterial activity against B. subtilis ATCC 6633 (625 µg/ml and 1250 µg/ml, respectively), E. faecalis ATCC 29212 (>5000 µg/ml and 1250 µg/ml, respectively), E. coli ATCC 25922 (>5000 µg/ml), P. aeruginosa ATCC 27853 (>5000 µg/ml), S. aureus ATCC 29213 (2500 µg/ml) at the specified concentrations. In the chemical analysis of the extracts, it was determined that the fatty acids were in high amounts, 33.22% and 40.41%, respectively, in the methanol and acetone extracts. Among the alternative methods to show activity against pathogenic microorganisms, algae can be a good natural resource. This study showed that Chlorella sp. contains high fatty acids and has potential as an antibacterial agent of natural origin.

References

  • Mobin SM, Chowdhury H, Alam F. Commercially important bioproducts from microalgae and their current applications-A review. Energy Procedia. 2019;160:752-760. https://doi.org/10.1016/j.egypro.2019.02.183
  • Schüler L, Greque de Morais E, Trovão M, Machado A, Carvalho B, Carneiro M, et al. Isolation and characterization of novel Chlorella vulgaris mutants with low chlorophyll and improved protein contents for food applications. Front Bioeng Biotechnol. 2020;8:469. https://doi.org/10.3389/fbioe.2020.00469
  • Ballottari M, Cecchin M, Simicevic J, Chaput L, Hernandez M, Girolomoni L, et al. Acclimation strategies of the green alga Chlorella vulgaris to different light regimes revealed by physiologic and comparative proteomic analyses. Authorea. 2022;19. https://doi.org/10.22541/au.166885035.53705751/v1
  • Fradique M, Batista AP, Nunes MC, Gouveia L, Bandarra NM, Raymundo A. Isochrysis galbana and Diacronema vlkianum biomass incorporation in pasta products as PUFA’s source. LWT-Food Sci Technol. 2013;50(1):312-319. https://doi.org/10.1016/j.lwt.2012.05.006
  • Fradinho P, Niccolai A, Soares R, Rodolfi L, Biondi N, Tredici MR, et al. Effect of Arthrospira platensis (spirulina) incorporation on the rheological and bioactive properties of gluten-free fresh pasta. Algal Res. 2020;45:101743. https://doi.org/10.1016/j.algal.2019.101743
  • Durmaz Y, Kilicli M, Toker OS, Konar N, Palabiyik I, Tamtürk F. Using spray-dried microalgae in ice cream formulation as a natural colorant: Effect on physicochemical and functional properties. Algal Res. 2020;47:101811. https://doi.org/10.1016/j.algal.2020.101811
  • Konar N, Durmaz Y, Genc Polat D, Mert B. Optimization of spray drying for Chlorella vulgaris by using RSM methodology and maltodextrin. J Food Process Preserv. 2022;46(5):e16594. https://doi.org/10.1111/jfpp.16594
  • Dineshkumar R, Kumaravel R, Gopalsamy J, Sikder MNA, Sampathkumar P. Microalgae as bio-fertilizers for rice growth and seed yield productivity. Waste Biomass Valorization. 2018;9(5):793-800. https://doi.org/10.1007/s12649-017-9873-5
  • Fawcett CA, Senhorinho GN, Laamanen CA, Scott JA. Microalgae as an alternative to oil crops for edible oils and animal feed. Algal Res. 2022;64:102663. https://doi.org/10.1016/j.algal.2022.102663
  • Zhou X, Jin W, Wang Q, Guo S, Tu R, Han SF, et al. Enhancement of productivity of Chlorella pyrenoidosa lipids for biodiesel using co-culture with ammonia-oxidizing bacteria in municipal wastewater. Renew. Energ. 2020;151:598-603. https://doi.org/10.1016/j.renene.2019.11.063
  • Putri TW, Raya I, Natsir H, Mayasari E. Chlorella sp: Extraction of fatty acid by using avocado oil as solvent and its application as an anti-aging cream. J Phys. 2018;979(1):012009. https://doi.org/10.1088/1742-6596/979/1/012009
  • De Luca M, Pappalardo I, Limongi AR, Viviano E, Radice RP, Todisco S, et al. Lipids from microalgae for cosmetic applications. Cosmetics. 2021;8(2):52. https://doi.org/10.3390/cosmetics8020052
  • Zhuang D, He N, Khoo KS, Ng EP, Chew KW, Ling TC. Application progress of bioactive compounds in microalgae on pharmaceutical and cosmetics. Chemosphere. 2021;291(2):132932. https://doi.org/10.1016/j.chemosphere.2021.132932
  • Mehariya S, Goswami RK, Karthikeysan OP, Verma P. Microalgae for high-value products: A way towards green nutraceutical and pharmaceutical compounds. Chemosphere. 2021;280:130553. https://doi.org/10.1016/j.chemosphere.2021.130553
  • Katiyar R, Gurjar BR, Biswas S, Pruthi V, Kumar N, Kumar P. Microalgae: an emerging source of energy-based bio-products and a solution for environmental issues. Renewable Sustainable Energy Rev. 2017;72:1083-1093. https://doi.org/10.1016/j.rser.2016.10.028
  • Ahmad AL, Yasin NM, Derek CJC, Lim JK. Microalgae as a sustainable energy source for biodiesel production: a review. Renewable Sustainable Energy Rev. 2011;15(1):584-593. https://doi.org/10.1016/j.rser.2010.09.018
  • Silva J, Alves C, Pinteus S, Reboleira J, Pedrosa R, Bernardino S. Chlorella. In: Nabavi SM and Silva AS editors. Nonvitamin and nonmineral nutritional supplements. Academic Press; 2019. p. 187. https://doi.org/10.1016/C2016-0-03546-5
  • Farooq W, Lee YC, Ryu BG, Kim BH, Kim HS, Choi YE, et al. Two-stage cultivation of two Chlorella sp. strains by simultaneous treatment of brewery wastewater and maximizing lipid productivity. Bioresour Technol. 2013;132:230-238. https://doi.org/10.1016/j.biortech.2013.01.034
  • Zhang J, Liu L, Chen F. Production and characterization of exopolysaccharides from Chlorella zofingiensis and Chlorella vulgaris with anti-colorectal cancer activity. Int J Biol Macromol. 2019;134:976-983. https://doi.org/10.1016/j.ijbiomac.2019.05.117
  • Barboríková J, Šutovská M, Kazimierová I, Jošková M, Fraňová S, Kopecký J, et al. Extracellular polysaccharide produced by Chlorella vulgaris-Chemical characterization and anti-asthmatic profile. Int J Biol Macromol. 2019;135:1-11. https://doi.org/10.1016/j.ijbiomac.2019.05.104
  • Coulombier N, Jauffrais T, Lebouvier N. Antioxidant compounds from microalgae: A review. Mar Drugs. 2021;19(10):549. https://doi.org/10.3390/md19100549
  • Erbil GÇ, Durmaz Y, Elp M: Indoor Growth Performance of Chlorella sp. Production at Tubular Photobioreactor. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi 2021, 7(2): 90-95.
  • Gouveia L, Veloso V, Reis A, Fernandes H, Novais J, Empis J. Evolution of pigment composition in Chlorella vulgaris. Bioresour Technol. 1996;57(2):157-163. https://doi.org/10.1016/0960-8524(96)00058-2
  • Damergi E, Schwitzguébel JP, Refardt D, Sharma S, Holliger C, Ludwig C. Extraction of carotenoids from Chlorella vulgaris using green solvents and syngas production from residual biomass. Algal Res. 2017;25:488-495. https://doi.org/10.1016/j.algal.2017.05.003
  • Show PL. Global market and economic analysis of microalgae technology: Status and perspectives. Bioresour Technol. 2022;357:127329. https://doi.org/10.1016/j.biortech.2022.127329
  • Zhou L, Li K, Duan X, Hill D, Barrow C, Dunshea F, et al. Bioactive compounds in microalgae and their potential health benefits. Food Biosci. 2022;49:101932. https://doi.org/10.1016/j.fbio.2022.101932
  • Kapoor S, Singh M, Srivastava A, Chavali M, Chandrasekhar K, Verma P. Extraction and characterization of microalgae‐derived phenolics for pharmaceutical applications: A systematic review. J Basic Microbiol. 2022;62(9):1044-1063. https://doi.org/10.1002/jobm.202100458
  • UTEX BG-11 medium recipe. 2009. [cited May 2023]. Available from: http://web.biosci.utexas.edu
  • Kıymacı ME, Tok KC, Hürkul MM. A study on phytochemical analysis and antibacterial activity of Quercus macranthera subsp. syspirensis (K. Koch) Menitsky branch and leaf extracts. J Fac Pharm Ankara. 2022;46(1):160-169. https://doi.org/10.33483/jfpau.1034549
  • Blau K, Halket JM. Handbook of derivatives for chromatography. Wiley, 1993.
  • EUCAST. European Committee on Antimicrobial Susceptibility Testing. 2009. [cited May 2023]. Available from: www.eucast.org
  • Shaima AF, Mohd Yasin NH, Ibrahim N, Takriff MS, Gunasekaran D, Ismaeel M. Unveiling antimicrobial activity of microalgae Chlorella sorokiniana (UKM2), Chlorella sp. (UKM8) and Scenedesmus sp. (UKM9). Saudi J Biol Sci. 2022;29(2):1043-1052. https://doi.org/10.1016/j.sjbs.2021.09.069
  • Santhosh S, Dhandapani R, Hemalatha N. Bioactive compounds from microalgae and its different applications-a review. Adv Appl Sci Res. 2016;7(4):153-158.
  • Hussein HJ, Naji SS, Sahi Al-Khafaji NM. Antibacterial properties of the Chlorella vulgaris isolated from polluted water in Iraq. J Pharm Sci Res. 2018;10(10):2457-2460.
  • Kabara JJ, Swieczkowski DM, Conley AJ, Truant JP. Fatty acids and derivatives as antimicrobial agents. Antimicrob Agents Chemother. 1972;2(1):23-28.
  • Desbois AP. Potential applications of antimicrobial fatty acids in medicine, agriculture and other industries. Recent Pat Antiinfect Drug Discov. 2012;7:111-122. https://doi.org/10.2174157489112801619728
  • Casillas-Vargas G, Ocasio-Malavé C, Medina S, Morales-Guzmán C, Del Valle RG, Carballeira NM, et al. Antibacterial fatty acids: An update of possible mechanisms of action and implications in the development of the next generation of antibacterial agents. Prog Lipid Res. 2021;82:101093. https://doi.org/10.1016/j.plipres.2021.101093

Chlorella sp. Kültürünün Ham Ekstrelerinin Kimyasal İçeriği ve Antibakteriyel Aktivitesi

Year 2023, Volume: 43 Issue: 2, 111 - 119, 01.06.2023
https://doi.org/10.52794/hujpharm.1102486

Abstract

Bu çalışmada Chlorella sp.'nın metanol ve aseton ekstrelerinin antibakteriyel aktivitesi incelenmiştir. Ekstrelerin kimyasal içerikleri GC/MS analizi ile aydınlatılmıştır. Chlorella sp. ekstrelerinin antibakteriyel aktivitesi, Bacillus subtilis ATCC 6633, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus ATCC 29213'e karşı sıvı mikrodilüsyon yöntemiyle minimum inhibitör konsantrasyonu olarak belirlendi. Chlorella sp.’nin metanol ve aseton ekstrelerinin B. subtilis ATCC 6633 (sırasıyla 625 µg/ml ve 1250 µg/ml), E. faecalis ATCC 29212 (sırasıyla >5000 µg/ml ve 1250 µg/ml), E. coli ATCC 25922 (>5000 µg/ml), P. aeruginosa ATCC 27853 (>5000 µg/ml) ve S. aureus ATCC 29213 (2500 µg/ml) karşı belirtilen konsantrasyonlarda antibakteriyel aktivite gösterdiği belirlenmiştir. Ekstrelerin kimyasal analizlerinde metanol ve aseton ekstrelerinde sırasıyla %33.22 ve %40.41 oranında yağ asitlerinin olduğu belirlendi. Patojenik mikroorganizmalara karşı aktivite gösterecek alternatif yöntemler arasında algler iyi bir doğal kaynak olabilir. Bu çalışma Chlorella sp.'nın yüksek yağ asitleri içerdiği ve doğal kaynaklı bir antibakteriyel ajan olarak potansiyele sahip olduğunu göstermiştir.

References

  • Mobin SM, Chowdhury H, Alam F. Commercially important bioproducts from microalgae and their current applications-A review. Energy Procedia. 2019;160:752-760. https://doi.org/10.1016/j.egypro.2019.02.183
  • Schüler L, Greque de Morais E, Trovão M, Machado A, Carvalho B, Carneiro M, et al. Isolation and characterization of novel Chlorella vulgaris mutants with low chlorophyll and improved protein contents for food applications. Front Bioeng Biotechnol. 2020;8:469. https://doi.org/10.3389/fbioe.2020.00469
  • Ballottari M, Cecchin M, Simicevic J, Chaput L, Hernandez M, Girolomoni L, et al. Acclimation strategies of the green alga Chlorella vulgaris to different light regimes revealed by physiologic and comparative proteomic analyses. Authorea. 2022;19. https://doi.org/10.22541/au.166885035.53705751/v1
  • Fradique M, Batista AP, Nunes MC, Gouveia L, Bandarra NM, Raymundo A. Isochrysis galbana and Diacronema vlkianum biomass incorporation in pasta products as PUFA’s source. LWT-Food Sci Technol. 2013;50(1):312-319. https://doi.org/10.1016/j.lwt.2012.05.006
  • Fradinho P, Niccolai A, Soares R, Rodolfi L, Biondi N, Tredici MR, et al. Effect of Arthrospira platensis (spirulina) incorporation on the rheological and bioactive properties of gluten-free fresh pasta. Algal Res. 2020;45:101743. https://doi.org/10.1016/j.algal.2019.101743
  • Durmaz Y, Kilicli M, Toker OS, Konar N, Palabiyik I, Tamtürk F. Using spray-dried microalgae in ice cream formulation as a natural colorant: Effect on physicochemical and functional properties. Algal Res. 2020;47:101811. https://doi.org/10.1016/j.algal.2020.101811
  • Konar N, Durmaz Y, Genc Polat D, Mert B. Optimization of spray drying for Chlorella vulgaris by using RSM methodology and maltodextrin. J Food Process Preserv. 2022;46(5):e16594. https://doi.org/10.1111/jfpp.16594
  • Dineshkumar R, Kumaravel R, Gopalsamy J, Sikder MNA, Sampathkumar P. Microalgae as bio-fertilizers for rice growth and seed yield productivity. Waste Biomass Valorization. 2018;9(5):793-800. https://doi.org/10.1007/s12649-017-9873-5
  • Fawcett CA, Senhorinho GN, Laamanen CA, Scott JA. Microalgae as an alternative to oil crops for edible oils and animal feed. Algal Res. 2022;64:102663. https://doi.org/10.1016/j.algal.2022.102663
  • Zhou X, Jin W, Wang Q, Guo S, Tu R, Han SF, et al. Enhancement of productivity of Chlorella pyrenoidosa lipids for biodiesel using co-culture with ammonia-oxidizing bacteria in municipal wastewater. Renew. Energ. 2020;151:598-603. https://doi.org/10.1016/j.renene.2019.11.063
  • Putri TW, Raya I, Natsir H, Mayasari E. Chlorella sp: Extraction of fatty acid by using avocado oil as solvent and its application as an anti-aging cream. J Phys. 2018;979(1):012009. https://doi.org/10.1088/1742-6596/979/1/012009
  • De Luca M, Pappalardo I, Limongi AR, Viviano E, Radice RP, Todisco S, et al. Lipids from microalgae for cosmetic applications. Cosmetics. 2021;8(2):52. https://doi.org/10.3390/cosmetics8020052
  • Zhuang D, He N, Khoo KS, Ng EP, Chew KW, Ling TC. Application progress of bioactive compounds in microalgae on pharmaceutical and cosmetics. Chemosphere. 2021;291(2):132932. https://doi.org/10.1016/j.chemosphere.2021.132932
  • Mehariya S, Goswami RK, Karthikeysan OP, Verma P. Microalgae for high-value products: A way towards green nutraceutical and pharmaceutical compounds. Chemosphere. 2021;280:130553. https://doi.org/10.1016/j.chemosphere.2021.130553
  • Katiyar R, Gurjar BR, Biswas S, Pruthi V, Kumar N, Kumar P. Microalgae: an emerging source of energy-based bio-products and a solution for environmental issues. Renewable Sustainable Energy Rev. 2017;72:1083-1093. https://doi.org/10.1016/j.rser.2016.10.028
  • Ahmad AL, Yasin NM, Derek CJC, Lim JK. Microalgae as a sustainable energy source for biodiesel production: a review. Renewable Sustainable Energy Rev. 2011;15(1):584-593. https://doi.org/10.1016/j.rser.2010.09.018
  • Silva J, Alves C, Pinteus S, Reboleira J, Pedrosa R, Bernardino S. Chlorella. In: Nabavi SM and Silva AS editors. Nonvitamin and nonmineral nutritional supplements. Academic Press; 2019. p. 187. https://doi.org/10.1016/C2016-0-03546-5
  • Farooq W, Lee YC, Ryu BG, Kim BH, Kim HS, Choi YE, et al. Two-stage cultivation of two Chlorella sp. strains by simultaneous treatment of brewery wastewater and maximizing lipid productivity. Bioresour Technol. 2013;132:230-238. https://doi.org/10.1016/j.biortech.2013.01.034
  • Zhang J, Liu L, Chen F. Production and characterization of exopolysaccharides from Chlorella zofingiensis and Chlorella vulgaris with anti-colorectal cancer activity. Int J Biol Macromol. 2019;134:976-983. https://doi.org/10.1016/j.ijbiomac.2019.05.117
  • Barboríková J, Šutovská M, Kazimierová I, Jošková M, Fraňová S, Kopecký J, et al. Extracellular polysaccharide produced by Chlorella vulgaris-Chemical characterization and anti-asthmatic profile. Int J Biol Macromol. 2019;135:1-11. https://doi.org/10.1016/j.ijbiomac.2019.05.104
  • Coulombier N, Jauffrais T, Lebouvier N. Antioxidant compounds from microalgae: A review. Mar Drugs. 2021;19(10):549. https://doi.org/10.3390/md19100549
  • Erbil GÇ, Durmaz Y, Elp M: Indoor Growth Performance of Chlorella sp. Production at Tubular Photobioreactor. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi 2021, 7(2): 90-95.
  • Gouveia L, Veloso V, Reis A, Fernandes H, Novais J, Empis J. Evolution of pigment composition in Chlorella vulgaris. Bioresour Technol. 1996;57(2):157-163. https://doi.org/10.1016/0960-8524(96)00058-2
  • Damergi E, Schwitzguébel JP, Refardt D, Sharma S, Holliger C, Ludwig C. Extraction of carotenoids from Chlorella vulgaris using green solvents and syngas production from residual biomass. Algal Res. 2017;25:488-495. https://doi.org/10.1016/j.algal.2017.05.003
  • Show PL. Global market and economic analysis of microalgae technology: Status and perspectives. Bioresour Technol. 2022;357:127329. https://doi.org/10.1016/j.biortech.2022.127329
  • Zhou L, Li K, Duan X, Hill D, Barrow C, Dunshea F, et al. Bioactive compounds in microalgae and their potential health benefits. Food Biosci. 2022;49:101932. https://doi.org/10.1016/j.fbio.2022.101932
  • Kapoor S, Singh M, Srivastava A, Chavali M, Chandrasekhar K, Verma P. Extraction and characterization of microalgae‐derived phenolics for pharmaceutical applications: A systematic review. J Basic Microbiol. 2022;62(9):1044-1063. https://doi.org/10.1002/jobm.202100458
  • UTEX BG-11 medium recipe. 2009. [cited May 2023]. Available from: http://web.biosci.utexas.edu
  • Kıymacı ME, Tok KC, Hürkul MM. A study on phytochemical analysis and antibacterial activity of Quercus macranthera subsp. syspirensis (K. Koch) Menitsky branch and leaf extracts. J Fac Pharm Ankara. 2022;46(1):160-169. https://doi.org/10.33483/jfpau.1034549
  • Blau K, Halket JM. Handbook of derivatives for chromatography. Wiley, 1993.
  • EUCAST. European Committee on Antimicrobial Susceptibility Testing. 2009. [cited May 2023]. Available from: www.eucast.org
  • Shaima AF, Mohd Yasin NH, Ibrahim N, Takriff MS, Gunasekaran D, Ismaeel M. Unveiling antimicrobial activity of microalgae Chlorella sorokiniana (UKM2), Chlorella sp. (UKM8) and Scenedesmus sp. (UKM9). Saudi J Biol Sci. 2022;29(2):1043-1052. https://doi.org/10.1016/j.sjbs.2021.09.069
  • Santhosh S, Dhandapani R, Hemalatha N. Bioactive compounds from microalgae and its different applications-a review. Adv Appl Sci Res. 2016;7(4):153-158.
  • Hussein HJ, Naji SS, Sahi Al-Khafaji NM. Antibacterial properties of the Chlorella vulgaris isolated from polluted water in Iraq. J Pharm Sci Res. 2018;10(10):2457-2460.
  • Kabara JJ, Swieczkowski DM, Conley AJ, Truant JP. Fatty acids and derivatives as antimicrobial agents. Antimicrob Agents Chemother. 1972;2(1):23-28.
  • Desbois AP. Potential applications of antimicrobial fatty acids in medicine, agriculture and other industries. Recent Pat Antiinfect Drug Discov. 2012;7:111-122. https://doi.org/10.2174157489112801619728
  • Casillas-Vargas G, Ocasio-Malavé C, Medina S, Morales-Guzmán C, Del Valle RG, Carballeira NM, et al. Antibacterial fatty acids: An update of possible mechanisms of action and implications in the development of the next generation of antibacterial agents. Prog Lipid Res. 2021;82:101093. https://doi.org/10.1016/j.plipres.2021.101093
There are 37 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences
Journal Section Research Articles
Authors

Kenan Can Tok 0000-0002-9353-8867

Gökhun Çağatay Erbil 0000-0002-6704-5073

Şeyda Yayla 0000-0002-3678-6506

Merve Eylül Kıymacı 0000-0001-5343-1064

Muhammed Mesud Hürkul 0000-0002-9241-2496

Publication Date June 1, 2023
Acceptance Date February 1, 2023
Published in Issue Year 2023 Volume: 43 Issue: 2

Cite

Vancouver Tok KC, Erbil GÇ, Yayla Ş, Kıymacı ME, Hürkul MM. Chemical Screening and Antibacterial Activity of Crude Extracts of Chlorella sp. in Culture. HUJPHARM. 2023;43(2):111-9.