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ABSTRACT: 

 

Mapping of the with-in field variability of crop vigor has a long tradition with a success rate ranging from medium to high depending 

on the local conditions of the study. Information about the development of agronomical relevant crop parameters, such as above-

ground biomass and crop nutritional status, provides high reliability for yield estimation and recommendation for variable rate 

application of fertilizers. The aim of this study was to utilize unmanned and satellite multispectral imaging for estimation of basic 

crop parameters during the growing season. The experimental part of work was carried out in 2014 at the winter wheat field with an 

area of 69 ha located in the South Moravia region of the Czech Republic. An UAV imaging was done in April 2014 using Sensefly 

eBee, which was equipped by visible and near infrared (red edge) multispectral cameras. For ground truth calibration the spectral 

signatures were measured on 20 sites using portable spectroradiometer ASD Handheld 2 and simultaneously plant samples were 

taken at BBCH 32 (April 2014) and BBCH 59 (Mai 2014) for estimation of above-ground biomass and nitrogen content. The UAV 

survey was later extended by selected cloud-free Landsat 8 OLI satellite imagery, downloaded from USGS web application Earth 

Explorer. After standard pre-processing procedures, a set of vegetation indices was calculated from remotely and ground sensed data. 

As the next step, a correlation analysis was computed among crop vigor parameters and vegetation indices. Both, amount of above-

ground biomass and nitrogen content were highly correlated (r > 0.85) with ground spectrometric measurement by ASD Handheld 2 

in BBCH 32, especially for narrow band vegetation indices (e.g. Red Edge Inflection Point). UAV and Landsat broadband 

vegetation indices varied in range of r = 0.5 – 0.7, highest values of the correlation coefficients were obtained for crop biomass by 

using GNDVI. In all cases results from BBCH 59 vegetation stage showed lower relationship to vegetation indices. Total amount of 

aboveground biomass was identified as the most important factor influencing the values of vegetation indices. Based on the results 

can be assumed that UAV and satellite monitoring provide reliable information about crop parameters for site specific crop 

management. The main difference of their utilization is coming from their specification and technical limits. Satellite survey can be 

used for periodic monitoring of crops as the indicator of their spatial heterogeneity within fields, but with low resolution (30 m per 

pixel for OLI). On the other hand UAV represents a special campaign aimed on the mapping of high-detailed spatial inputs for site 

specific crop management and variable rate application of fertilizers. 

 

 

1. INTRODUCTION 

Site specific management, known as precision agriculture, is an 

internationally unified term for directions of land management 

using new technologies that began to be developed in the 

eighties and early nineties of the twentieth century. The aim of 

precision agriculture is an optimization of production inputs 

(fertilizers, pesticides, fuel, etc.) based on the local crop 

requirements and soil condition. Crop management in this way 

can lead to economically efficient use of agrochemicals and 

minimization of environmental risks. Site specific management 

takes into consideration spatial variability within fields and 

optimizes the production inputs, thus fulfilling the objectives of 

sustainable agriculture (Corwin & Plant 2005). 

 

For site specific crop treatments during vegetation period, such 

as fertilizing or crop protection, full coverage information about 

the heterogeneity of crop vigor are needed. The survey by using 

traditional sampling methods at the appropriate spatial level is 

costly and labour consuming.  

Remote sensing methods provide a various tools for assessment 

of canopy stand parameters, which are applied in last two 

decades (Mulla, 2013). For quantification of crop biophysical 

parameters, which are related to nutrient and healthy status of 

plants and thus important for yield formation, various 

vegetation indices are recommended as described by many 

research studies (for cereals e.g. (Fu et al., 2014; Li et al., 

2014).  

 

Besides already established airborne and satellite multispectral 

imaging, an application of unmanned aerial survey by Remotely 

Piloted Aircraft Systems in precision agriculture is rapidly 

increasing in recent years (Zhang a Kovacs, 2012). There are 

many research studies which investigate development of the 

unmanned aerial platforms (Link et al., 2013), the processing 

and use of this new type of image data in precision agriculture, 

which can include the methodology for radiometric correction 

of images (Del Pozo et al., 2014; Kelcey a Lucieer, 2012) or 

development of the entire processing chain from raw images up 

to georeferenced reflectance images, digital surface models and 

biomass estimates, which integrates photogrammetric and 

quantitative remote sensing approaches (Honkavaara et al., 

2013). Generally, compared to the airborne and satellite 

imaging, UAV survey offers cheaper operation and higher 
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spatial resolution of the image together with high flexibility 

(Pechanec et al., 2014). Main sensing technology is based on 

the multispectral cameras, which provide single bands for 

calculation of broadband vegetation indices (Candiago et al., 

2015; Gómez-Candón et al., 2014; Sankaran et al., 2015). Other 

category are narrowband hyperspectral sensors, which allows to 

estimate more specific vegetation indices or chlorophyll 

fluorescence (Aasen et al., 2015; Lucieer et al., 2014; Zarco-

Tejada et al., 2009). But also simple RGB imaging is useful for 

crop assessment, as presented by Bendig et al. (2014) by the 

estimation of spring barley biomass based on the crop surface 

model from UAV survey in visible spectrum.  

 

The aim of the study was to verify the possibility of assessment 

of the basic parameters of winter wheat canopy represented as 

the total amount of aboveground biomass and nutritional status 

of the plants by using unmanned multispectral imaging. 

 

  

2. MATERIAL AND METHODS 

Experimental work was carried out at the field of area 68.77 ha 

with winter wheat at locality Otnice (Czech Republic, South 

Moravia region; 49 ° 5'27 "N, 16 ° 50'32" E). The land surface 

is gently sloped (215-277 m asl), predominant soil types are 

haplic luvisol and chernosem. Plant samples were taken during 

vegetation period in BBCH 32 (15th April 2014) and BBCH 59 

(13th Mai 2014) at 20 control points for estimation of above-

ground biomass and nitrogen content. Information about 

nitrogen concentration in plants and total amount of dry 

biomass allows to calculate nitrogen uptake (N-uptake), 

expressed as amount of N per square meter. Simultaneously the 

spectral signatures were measured using portable 

spectroradiometer ASD Handheld 2 in the spectral range 325 - 

1000 nm. 

 

  

Figure 1. Photo of Sensefly eBee and its take off at 

experimental site 

Unmanned aerial imaging was carried out on 22nd April 2014 

Checkterra, s.r.o. company with their Sensefly eBee, which was 

equipped by one camera in visible spectrum (Canon S110 RGB) 

and one camera for near infrared - red edge (Canon S110 RE). 

This means that complete survey consists of two flights and 

over 500 images with 15 cm spatial resolution for each flight 

were acquired. Orthomosaic was processed in Pix4D Postflight 

Terra 3D software and later corrected by Quick Atmosphere 

Corrections tools in ENVI 5.2 software.  

 

Besides aerial survey, available cloud-free Landsat 8 OLI 

satellite images were downloaded from USGS web application 

Earth Explorer for whole vegetation period. The Landsat scene 

covers 185-by-180 km surface area with the spectral resolution 

of 15 m (panchromatic band), 30 m (multispectral bands) and 

100 m (thermal bands) (Irons et al., 2012).  For this study, only 

images related to the dates of crop survey were selected - 

acquisition day 108 (18th April) and 140 (20th Mai). Pixel DN 

values were corrected to top-of-atmosphere by band coefficients 

from metadata file and surface reflectance using dark 

subtraction tool, both made in Harris ENVI 5.2 software.  

 

After pre-processing procedures, a set of vegetation indices 

(NDVI, GNDVI, EVI2 and REIP) was calculated from remotely 

and ground sensed data. Normalized Difference Vegetation 

Index (NDVI) was originally developed for estimating the 

proportion of vegetation cover in shrubby area from broadband 

satellite data (Rouse et al. 1974). Normalization partially 

reduces some disruptive impacts on the imagery data, such as 

differences in scene illumination, shadows and atmospheric 

influences, because their effect is similar across the spectral 

bands. The equation for calculation of NDVI from broadband 

sensors is: 

 

     (1) 

 

where RNIR, RRed is reflectance in NIR and red bands, 

respectively. The result of the calculation of NDVI index is a 

dimensionless value from the interval between -1and 1. When 

hyperspectral data are used, only selected bands with specific 

wavelength are chosen. For ASD data, calculation according 

Heege et al. (2008) was used with R670 and R800. 

 

Small modification of NDVI is Green NDVI, where instead of 

red, green reflectance is calculated. Some studies describe the 

higher sensitivity of GNDVI to the changes in chlorophyll 

concentration in comparison to NDVI (Gitelson a Merzlyak, 

1998). 

 

Huete et al. (1994) introduced the Enhanced Vegetation Index 

(EVI), which reduces atmospheric and canopy background 

effects by implementation of blue band reflectance into 

normalized calculation. Later Jiang et al. (2008) developed two 

bands EVI (EVI2), which is calculated from red and NIR bands 

and allows higher compatibility among various sensors by 

keeping functionally equivalent to EVI:  

 

   (2) 

 

According to Gao et al. (2000), NDVI is influenced more by 

chlorophyll content and saturates at high amount of 

aboveground biomass of plants, while EVI is related tightly to a 

structural changes in crop canopy stands and thus better 

corresponds to crop biomass. As a result, EVI has a higher 

sensitivity to changes in the green vegetation at a higher level of 

above-ground biomass (Huete et al., 2002).  

 

One of the vegetation indices often used for estimation of 

nutrient status of field crops is Red Edge Inflection Point 

(REIP), which indicates the wavelength of the inflection point 

in the red edge part of spectrum. The position of this point is 

generally in the region 680-750 nm. An increase of chlorophyll 

concentration in plants or amount of biomass causes a shift of 

inflection point to higher wavelengths (Heege et al. 2008). 

Several methods have been proposed for calculation of REIP, in 

this study the linear interpolation from four wavelengths 

according to the empirical equation proposed by Guyot et al. 

(1988) was used: 

 

 [nm]                        (3)                                               
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As the last step, the average value for buffer area of control 

points with the diameter of 2 m was extracted by Zonal Statistic 

tool in ESRI ArcGIS 10.2 and correlation analysis was 

computed among crop vigor parameters and vegetation indices. 

 

 

3. RESULTS AND DISCUSSION 

Basic statistical results of assessment of crop parameters from 

plant sampling and their laboratory analysis are shown in Table 

1. Higher variability, evaluated by coefficient of variability 

(CV), was achieved in BBCH 32, mainly in the total amount of 

above ground fresh biomass and N-uptake. The variability of 

vegetation indices from ASD, UAV and Landsat didn’t exceed 

20 % of CV lower (not presented in the table). 

 

 

 

BBCH 32 

N conc. 

[%] 

Biom. 

fresh 

[g.m-2] 

Biom. 

dry 

[g.m-2] 

N uptake 

[g.m-2] 

Average 2.57 1885 399 10.64 

Median 2.48 1589 372 8.82 

Minimum 1.91 910 207 5.18 

Maximum 3.81 4087 656 24.98 

St.dev. 0.52 786 113 5.10 

CV (%) 20.10 41.72 28.31 47.92 

 

BBCH 59 

 

Average 2.23 3210 810 18.07 

Median 2.24 3086 795 17.83 

Minimum 1.86 1896 573 10.67 

Maximum 2.61 4868 1125 29.34 

St. dev. 0.21 735 152 0.32 

CV (%) 9.34 22.90 18.78 24.30 

Table 1. Basic statistics of results of plant analysis (St. dev. – 

standard deviation, CV – coefficient of variability, N conc. – 

nitrogen concentration, Biom. – total amount of above-ground 

biomass) 

 

 

Figure 2. Orthomosaic of the experimental field from UAV 

survey in the false color representation 

 

Results of correlation analysis between vegetation indices and 

crop parameters are shown in Table 1 (BBCH 32) and 2 (BBCH 

59). Both, amount of above-ground biomass and nitrogen 

content were highly correlated (r > 0.85) with ground 

spectrometric measurement by ASD Handheld 2 in BBCH 32, 

especially for narrow band vegetation indices (e.g. Red Edge 

Inflection Point). Sensitivity of REIP nitrogen concentration in 

leaves was observed in many recent studies. Mariotto et al. 

(2013) find that use of narrowband hyperspectral sensors 

provide 25 % greater variability in crop modelling and 20 % 

greater accuracy in crop discrimination compared to broadband 

sensors. The correlation coefficients were lower in BBCH 59, 

but still highest from all spectral measurements.  

 

 

Figure 2. GNDVI image of the experimental field from UAV 

survey with the position of control points 

 

 

Figure 3. Landsat NDVI image of the experimental field from 

18th April 2014 (Acquisition date 108) 

 

For unmanned aerial imaging, in both sampling dates were 

achieved the highest values of correlation coefficients with 

biomass by GNDVI. This confirms the results of the study the 

authors Gitelson a Merzlyak (1998) who describe GNDVI 

greater sensitivity to changes in the index of chlorophyll than 

NDVI. Figures below show the scatterplots of NDVI and dry 

biomass (Figure 4) and GNDVI between N-uptake.  

Compared to the Landsat images, UAV vegetation indices 

achieved higher level of correlation with the crop parameters 

(except N concentration) from first sampling date. However, for 

second plant sampling date, the correlation decreased, probably 

due the two weeks lag between plant sampling and UAV 

survey. 
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The amount of above-ground biomass, which is an important 

indicator of plant growth and yield estimation wheat (Fu et al., 

2014), was identified as the dominant for most of verified 

remotely sensed indices. As reported by (Li et al., 2008), the 

relationship between vegetation indices and crop parameters 

changes during the growing season, which is reflected by lower 

sensitivity of vegetation indices at higher leaf area index (LAI) 

due the saturation of the reflected radiation. This is evident 

from the graph in Fig. 4, where the higher values of biomass are 

nor identified by NDVI values. When reaching a certain level 

LAI, value of broadband NDVI doesn’t reflect the increase of 

canopy density linearly anymore and they decrease with 

vegetation senescence (Baret & Guyot 1991). 

 

 

ASD 

N cont. 

[%] 

Biom. fresh 

[g.m-2] 

Biom. dry 

[g.m-2] 

N uptake 

[g.m-2] 

NDVI 0.678 0.647 0.593 0.667 

GNDVI 0.839 0.771 0.700 0.806 

SRI 0.764 0.741 0.675 0.768 

REIP 0.875 0.879 0.826 0.910 

UAV  

NDVI 0.355 0.646 0.688 0.598 

GNDVI 0.495 0.754 0.758 0.709 

SRI 0.369 0.654 0.693 0.610 

Landsat (Acquisition date 108 – 18th April 2014) 

NDVI 0.563 0.584 0.564 0.592 

SRI 0.585 0.596 0.574 0.612 

EVI2 0.479 0.607 0.620 0.601 

Crop parameters 

N cont. 1.000 0.828 0.670 0.880 

Biom.fr. 0.828 1.000 0.957 0.989 

Biom.dry 0.670 0.957 1.000 0.934 

N-uptake 0.880 0.989 0.934 1.000 

Table 2. Pearson correlation coefficients between vegetation 

indices from handheld spectrometer (ASD), UAV survey and 

Landsat OLI images (acquisition day marked) and crop 

parameters for BBCH 32. Bold values are statistically 

significant at 95 % level. 

 

 

ASD 

N cont. 

[%] 

Biom. fresh 

[g.m-2] 

Biom. dry 

[g.m-2] 

N uptake 

[g.m-2] 

NDVI 0.404 0.453 0.434 0.504 

GNDVI 0.498 0.680 0.627 0.695 

REIP 0.516 0.764 0.700 0.772 

UAV  

NDVI 0.205 0.378 0.396 0.415 

GNDVI 0.289 0.456 0.444 0.487 

Landsat (Acquisition date 140 – 20th Mai 2014) 

NDVI 0.468 0.638 0.520 0.593 

EVI2 0.423 0.692 0.600 0.647 

Crop parameters 

N cont. 1.000 0.561 0.346 0.650 

Biom.fr. 0.561 1.000 0.955 0.978 

Biom.dry 0.346 0.955 1.000 0.934 

N-uptake 0.650 0.978 0.934 1.000 

Table 2. Pearson correlation coefficients between vegetation 

indices from handheld spectrometer (ASD), UAV survey and 

Landsat OLI images (acquisition day marked) and crop 

parameters for BBCH 59. Bold values are statistically 

significant at 95 % level. 

 

 

 

 

Figure 4. Scatter plot of NDVI values and dry biomass from 

UAV image in BBCH 32 

 

 

Figure 4. Scatter plot of GNDVI values and dry biomass from 

UAV image in BBCH 32 

 

 

CONCLUSIONS 

Based on the results can be assumed that UAV and satellite 

monitoring provide reliable information about crop parameters 

for site specific crop management. The main difference of their 

utilization is coming from their specification and technical 

limits. Satellite survey can be used for periodic monitoring of 

crops as the indicator of their spatial heterogeneity within fields, 

but with low resolution (30 m per pixel for OLI compared to the 

0.15 m per pixel of UAV imaging). On the other hand UAV 

represents a special campaign aimed on the mapping of high-

detailed spatial inputs for site specific crop management and 

variable rate application of fertilizers. 
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