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ABSTRACT: 

 

More and more high-spatial resolution satellite images are produced with the improvement of satellite technology.  However, the 

quality of images is not always satisfactory for application. Due to the impact of complicated atmospheric conditions and complex 

radiation transmission process in imaging process the images often suffer deterioration. In order to assess the quality of remote 

sensing images over urban areas, we proposed a general purpose image quality assessment methods based on feature extraction and 

machine learning. We use two types of features in multi scales. One is from the shape of histogram the other is from the natural scene 

statistics based on Generalized Gaussian distribution (GGD). A 20-D feature vector for each scale is extracted and is assumed to 

capture the RS image quality degradation characteristics. We use SVM to learn to predict image quality scores from these features. 

In order to do the evaluation, we construct a median scale dataset for training and testing with subjects taking part in to give the 

human opinions of degraded images. We use ZY3 satellite images over Wuhan area (a city in China) to conduct experiments. 

Experimental results show the correlation of the predicted scores and the subjective perceptions. 
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1. INTRODUCTION 

Chinese high resolution remote sensing satellites have generated 

a large number of remote sensing (RS) images every day. 

However users are still lack of domestic high quality RS data in 

application. To change this situation, in addition to improve the 

hardware conditions, satellite image quality evaluation and 

enhancement is the fundamental assurance for the commercial 

application. 

 

In the chain of optical image acquisition for RS satellites the 

platforms, sensors, atmospheric environment, the surface 

albedos all have influence on image quality. Of above factors 

satellite platform and sensors' impact on the geometry precision 

could be eliminated by sensor calibration while the image 

quality degradation caused by path scattering and the spectral 

mixture from the surrounding ground is difficult to eliminate, 

especially in urban areas. Compared to the mountainous area 

and the cultivated region the RS images in urban areas are 

mainly featured with artificial structures such as buildings, 

roads, tree, and lawns. The RS city images often contain 

complicated structures, high contrast objects and large 

information contents. Moreover with the industrial development 

and environmental pollution in cities the frequently occurred 

fog and haze has made RS city image quality evaluation and 

improvement a very difficult task. 

 

For one scene of a RS image the data quality can be divided 

into three parts: the geometric quality, the radiation quality and 

the quality of auxiliary data. The geometric quality is generally 

evaluated by internal and outside geometric positioning 

accuracy. The auxiliary data quality can provide the RS image 

information described by the data completeness, correctness and 

logic check results. Digital image based radiation quality 

expresses the ability of holding the surface reflectance 

characteristics (Wang, 2014). Depending on whether or not 

there are observers, the existing RS image quality evaluation is 

divided into two categories: the subjective evaluation and 

objective evaluation. For objective RS image quality evaluation 

a lot of previous work have been conducted and are mainly 

concentrated in the following four aspects (Chen, 2011 Ma, 

2014): (1) Task and application oriented RS image quality 

evaluation. The most typical example is the U.S. NIIRS which 

is used to assess the quality of military RS image classification 

(Irvine, 1997). The quality of image fusion, the classification 

accuracy and the scale of surveying and mapping are all task 

oriented. However, to fulfil the RS task successfully is not only 

decided by the quality of RS images but also by the contribution 

of data processing system and the visual interpretation done by 

workers. (2) Methods based on imaging system performance 

evaluation. In addition to the spatial resolution, temporal 

resolution, spectral resolution and radiation resolution, such 

methods focus on Modulation Transfer Function (MTF) based 

indexes and Signal to noise ratio (SNR) assessment (Zhang, 

2002 Ferzli, 2009). Good imaging system does generate high 

quality RS images. But the ground targets and imaging 

environment also play essential roles to the RS images 

acquisition. (3) Methods based on the image feature extraction. 

Such methods are mostly inherited from image processing field. 

They endeavour to find out the image features to represent the 

image quality degradation. Besides the traditional image 

features such as mean, variance, entropy, edges, contrast, 
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moments some recent features include JNB(Ferzli, 2009), 

CPBD(Narvekar, 2011), MLV(Bahrami, 2014), BRISQUE 

(Mittal, 2012), RIQMC(Gu, 2016) etc.. From the point of view 

of information theory and signal processing the above features 

try to capture the image edges and details, simulate the image 

blurring and contrast degradation and provide powerful tools to 

assess the image quality. However, the majority of the above 

methods are for close range visible images. They seldom 

consider the image degradation caused by atmospheric blurring, 

clouds, reflectance, sampling, quantization and other 

complicated conditions for RS imaging process. So it will be 

meaningful to adopt those methods to RS images and explore 

the effective features to express the characteristics of RS images. 

(4) Learning based methods. Some recent research includes 

CNN method (Kang, 2014), deep learning network (Gu, 2014), 

DOG model and random forest (Pei, 2015). These methods try 

to reveal the image quality degradation mechanism in feature 

space by training an empirical model then the prediction model 

is used to calculate the test image quality score. However most 

of these methods have strong image distortion dependence and 

have certain requirements on the sample selection and sample 

numbers. In most cases the computational complexity is also 

high which has restricted the use of such methods.  

 

In addition, due to the change of weather and air pollution there 

often exist clouds and haze in RS urban images, which leads to 

the loss of the local feature information. So the RS urban image 

quality evaluation must consider the degradation caused by 

cloud and haze. The existing cloud-index based features for RS 

images lack of adaptability for thin cloud and mist. And at least 

four bands are required to calculate the cloud index which is not 

suitable for panchromatic RS images. 

 

In this paper we adopt a general purpose framework to construct 

RS urban image quality indices based on natural scene statistic 

(NSS) models based on multi spectral RS images. Inspired by 

the work of Moorthy (Moorthy, 2010a) and Mittal (Mittal, 2013) 

we establish a model that can learn to predict human judgments 

of image quality from databases of human rated degraded 

images. Cloud and haze-caused image degradation are primarily 

considered but not limited to them. We do not explicitly seek to 

characterize the structure of degradation using local filters, but 

instead utilize concepts from NSS to produce an easily 

extensible approach to other kinds of distortions. Once trained, 

our algorithm does not require further foreknowledge of the 

distortion affecting the RS images to be assessed. 

 

The first contribution of this work is the development of a 

modular framework for image quality assessment of cloud and 

mist-deteriorated multi-spectral RS urban images. The 

modularity of the proposed method implies that the approach is 

extensible in that other distortion categories beyond the cloud 

and mist may be easily accomplished. The second contribution 

is the image quality index for RS urban images. Due to the 

diversity of the ground types, the multi-scale structures, the 

irregularity of spatial distribution of artificial buildings for 

urban areas the traditional filter based feature representation is 

ineffective. Our model is founded on perceptually relevant 

spatial domain NSS features extracted from local image patches 

that effectively capture the essential low-order statistics of RS 

images. We construct a dataset with image patches extracted 

from images acquired by multi-spectral sensors loaded on 

Chinese ZY3 satellite. We invited remote sensing image 

interpretation expert to give a quality score for each image patch 

and test our algorithm on the dataset. We demonstrate that our 

algorithm performs well in terms of correlation with human 

perception. 

 

 

2. QUALITY ASSESSMENT MODEL FOR REMOTE 

SENSED IMAGES OF URBAN AREA 

2.1 Image normalization based on NSS 

Compared to other images the RS urban images have rich 

feature categories, complex structures and abundant information 

content.  To extract the perceptually relevant spatial NSS 

features from the image patches. The spatial NSS model 

(Moorhy, 2010b) that we use begins by preprocessing the image 

by processes of local mean removal and divisive normalization: 
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Where 
1{1,.. }, {1,.. }, { ,.. }nx M y N      are spatial 

and spectral indices. For multi-spectral RS images 4n  , and 
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estimate the local mean and contrast respectively, where 

,{ | ,.. , ,.. }k lw w k K K l L L     is a 2D circularly-

symmetric Gaussian weighting function sampled out to 3 

standard deviations( 3K L  ) and rescaled to unit volume. 

The normalized image (1) has been observed to reliably follow 

a Gaussian distribution when computed from natural images.  

 

Given one scene of RS urban image of size 8856 by 8476 for 

example. The image patches with size P P are cropped 

randomly from the entire image. The normalization is computed 

on the image patches. 

  

2.2 Multi-scale image quality indices 

Given a collection of RS image patches, their qualities are 

characterized by the features computed from each patch. It has 

been generally noticed that the histogram indicates the 

probability distribution of image gray level and when computed 

over multi scales it reveals the statistical features in scale space. 

The types and degrees of image degradation caused by blur or 

cloud cover will generally affect the mean and shape of the local 

histograms in diverse ways. 

 

       
Region 1  (a) B1                        (b) B2  
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(c) B3                                 (d) B4 

 
(e) Histograms of (a-d).  

Blue-B1,Green-B2,Red-B3,Black-B4 

 

       
Region 2  (a) B1                        (b) B2 

      
(c) B3                               (d) B4  

 
(e) Histograms of (a-d), 

Blue-B1,Green-B2,Red-B3,Black-B4  

 

Figure 1. Two regions from ZY3 multispectral image (four 

bands with spatial resolution 5.8m) in Wuhan city and 

their histograms. The image patches are 200x200 and have 

been stretched and zoomed for display purpose. 

 

 

As shown in Fig.1, for Region 1 from ZY3 multispectral image 

of Wuhan city the image patch has relatively high quality 

(according to RS image interpretation expert). In region 2, there 

has fog and blur in band1 and band2 so their histograms (blue 

and green plots in Region2 (e)) are significantly compressed in 

a very narrow area with high peaks due to loss of structural 

properties. The pinnacle pattern in histogram represents the 

influence of imaging noise or environmental fogs over city. It is 

also noticed that for band 4 (black plot in Region2 (e)) the 

histogram has salient structural shapes since the infrared band is 

less affected by the fog. So the image quality of band 4 is thus 

relatively high. In order to express this characteristic, we use the 

mean and skew as descriptive quality features. For each image 

patch we extract these 2 features (
1 2,f f ) from each scale, 

yielding 2 NS  features for NS scale levels. 

 

Prior studies of NSS based image quality have shown that the 

generalized Gaussian distribution effectively captures the 

behaviour of the normalized natural images (Mittal, 2013). It 

has been observed that the model would be violated when the 

images do not derived from a natural source or when natural 

images are subjected to unnatural distortions. The degree of 

modification can be indicative of perceptual image degradation 

severity. So we use GGD based parameters as features to 

describe the gray distribution characteristics of the urban image 

caused by system noise and irregular cloud and mist coverage. 

The generalized Gaussian distribution (GGD)  with zero mean 

is given by: 

 

| |
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where ( )  is the gamma function: 
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The parameter  controls the 'shape' of the distribution. For 

example, 2  yields a Gaussian distribution and 1  yields a 

Laplacian distribution. The parameters of (4) ( ( , )  ) can be 

estimated using moment-matching based approach (Sharifi, 

1995) and be used as image quality features (
3 4,f f ). The signs 

of the normalized image (1) have been observed to follow a 

regular structure. This deviation can be captured by analysing 

the sample distribution of the products of pairs of adjacent pixel 

values computed along spatial horizontal, vertical and diagonal 

orientation (Mittal 2012): 
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Displacement squared images , , ,x y d dJ J J J 
are well-modeled 

as following a zero mode asymmetric generalized Gaussian 

distribution (AGGD): 

 

exp( ( ) ) 0
( ) (1 / )

( ; , , )

exp( ( ) ) 0
( ) (1 / )

l r l

l r

l r r

x
x

f x
x

x







   
  



   


    

 
   
  

             (7) 

 

The mean of the distribution can also be used as a statistics: 
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For each J there are four features obtained ( , , , )r l    . By 

extracting estimates along the four orientations, 16 parameters 

are arrived at yielding (
5 20,...f f ). All features are computed at 

NS scales to capture multi scale behaviour, by low pass 

filtering and down sampling by a factor of 2, yielding a set of 

20 NS  features. This feature vector characterizes the 

distortion that the image patch is subject to. 

 

2.3 SVM training and test 

Machine learning has been applied in the field of image quality 

assessment for a long time. In order to map feature vectors to 

predicted quality scores we use support vector machine (SVM). 

SVMs are popular as classifiers since they perform well in high-

dimensional spaces, avoid over-fitting and have good 

generalization capabilities. In our demonstration in order to 

produce a quality index, the SVM  is utilized to perform 

such a regression (Schölkopf 2000). Specifically, for each 

image patch we consider a SVM  is trained using quality 

scores from training set to learn the mapping from the feature 

space to subjective quality. When presented a test image the 

algorithm will produce a quality score which correlates with 

human perception. Finally, each SVM   constructed for 

quality assessment requires a set of parameters ( , )sC   to be 

determined. They are set using 5-fold cross validation on the 

training set of images. We use the LIBSVM package (Chang 

2011) to implement the SVR. In SVR, all the experiments use 

the radial basis function (RBF) kernel. 

 

 

3. EXPERIMENTAL RESULTS 

3.1 Dataset  

In order to evaluate the performance of proposed algorithm we 

construct a median scale dataset for training and testing. The 

dataset was derived from a set of source RS images acquired by 

a multispectral camera loaded on ZY3 satellite. ZY3 is China's 

first high-resolution optical mapping satellite for civil use. It 

was launched on 9 Jan. 2012, equipped with four optical 

cameras. One panchromatic TDI CCD of 3.6m for nadir view, 

two panchromatic TDI CCD cameras of 2.1m for front and rear 

view and one multispectral camera of 5.8m for nadir view. We 

used 4-bands multi-spectral images of Level 1 as source without 

doing enhancement and radiometric correction. Some 

information of one image used are shown in Table 1.  

 

Attribute Value 

Sensor type: MUX 

Image size 

(WidthInPixel×HeightInPixel）: 

8856×9716 

CenterTime: 20120620111111 

Center Lon/Lat: 114.22/30.65 

Coverage area: Wuhan city in China 

PixelByte uint16 

SolarAzimuth: 34.915783 

SolarZenith: 161.861008 

CloudPercent: 10% 

 

Table 1. The information of one source image used for dataset 

 

A total of 250 patches of 200×200 from each band were 

cropped from three source images. When do cutting, be sure 

that the sub-images contain a variety of ground types such as 

water, vegetation, artificial buildings, roads etc. and have 

different levels of noise and varying degrees of fog coverage. 

The subjects taking part in scoring are academic teachers of 

remote sensing science and technology from School of Remote 

Sensing and Information Engineering of Wuhan University in 

China. The average number of subjects ranking each image was 

3. Each subject was individually told the goal of the scoring. In 

order to highlight the impact of fog on image quality we 

assumed that the images containing mist or fog have low scores. 

Therefore, for the four bands of one image band 4 always had 

the highest score and band 1 the lowest one. The subjects 

reported their judgements of quality by dragging a slider on a 

quality scale according to their estimation on image contrast, 

clearness and more importantly the mist and fog content. The 

decimal number for the score is in the range 0-1. All the scores 

for the same image were averaged. Raw difference score for an 

image was considered to be an outlier if it was outside an 

interval of deviations about the mean score for that image. After 

rejecting 33 outliers a total of 217 images and their 

corresponding scores were kept and constitute our dataset. 

Figure 2 shows one example of the subjective scores for blue, 

green, red and infrared band of a randomly selected image patch. 

 

    

    
 

Figure 2. Four bands of an image patch with their 

subjective scores on title. Upper-left blue band, 

upper-right green band, lower-left red band and 

lower-right infrared. Notice that the infrared band 

has the highest quality score due to its less 

sensitivity to mist. 

 

 

3.2 Results 

For each sample of 217 images (four bands per image) in 

dataset we did normalization and calculated 20-D features for 

NS scales for each band as described in 2.1 and 2.2. Since our 

method is training based, the database needs to be partitioned 

into the training and test sets. The training set is used to train 

the regression model and the test is used to evaluate the 

performance of algorithm. Training and testing were 

implemented on each band dataset respectively. In our trial 

about 60% of the samples and their associated human subjective 

score are used to train and the remaining 40% used to test. The 

training and test set are disjoint and do not share content. 
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Therefore, our algorithm is independent of content and specific 

image degradation types. The performance indices contain the 

Person (Linear) Correlation Coefficient (LCC) and the Sum of 

Absolute Difference (SAD) between the predicted quality score 

and the subjective score provided by database. The better 

correlation with human perception means a smaller number for 

SAD and a value close to 1 for LCC. 

 

NS Num. 

of F 

Train 

(%) 

log2C LCC SAD 

3 60 75 20 0.7297(b1) 

0.6970(b2) 

0.7643(b3) 

0.6924(b4) 

8.3924 

8.4844 

6.6389 

7.5321 

4 80 75 16 0.7909 

0.7344 

0.8203 

0.8655 

7.0819 

7.2698 

5.3182 

4.9128 

5 100 75 18 0.8068 

0.8166 

0.9016 

0.9212 

6.3966 

6.0844 

4.3893 

3.9949 

3 60 70 16 0.6539 

0.6331 

0.7370 

0.5979 

9.9776 

10.2159 

7.6143 

10.4009 

4 80 70 13 0.7468 

0.7856 

0.7201 

0.8400 

8.4356 

8.9051 

6.8098 

5.9063 

5 100 70 11 0.7283 

0.7721 

0.8239 

0.9019 

8.4868 

7.3881 

5.7810 

4.5539 

3 60 65 16 0.4868 

0.6120 

0.6621 

0.5979 

12.8444 

10.4912 

9.6193 

10.8408 

4 80 65 10 0.6184 

0.6619 

0.6514 

0.7682 

10.4838 

9.3536 

8.3649 

7.3119 

5 100 65 12 0.6762 

0.7217 

0.8104 

0.8724 

9.5182 

8.6287 

7.3883 

5.2684 

 

Table 2. LCC and SAD results for different test setup 

 

Table 2 shows the results of LCC and SAD for different test 

setup. 'NS' is the scale numbers for multi scale feature 

extraction. 'Num. of F' means the feature numbers extracted for 

every test. 'Train (%)' is the proportion of training samples to 

the total number of samples. 'Log2C' is the logarithm ofC , the 

parameter of SVM  and has different values according to the 

result of 5-fold cross validation. s  =0.0625 for all the tests. In 

LCC and SAD columns in table 2, there are four numbers which 

are values for band 1-4 respectively.  

 

We designed three sets of experiments on different size training 

sets. The first experiment uses 75% of 217 images as training 

set and the remaining as test set by randomly selection, then the 

second and third uses 70% and 65% training samples. It shows 

that the regression accuracy increases with the increase of the 

number of training samples. For NS=3, the correlation 

coefficient for 65%,70% and 75% samples participating in 

training of band 1 is 0.4868, 0.6539 and 0.7297. For a certain 

training and test the prediction accuracy increases with the 

increases of the number of scale layers. The high dimensionality 

of the features brings the rise of precision but also makes the 

algorithm time become longer. Also we note that the quality of 

band 4 has always been higher than that of other bands which is 

consistent with our scoring rules used in subjective score 

acquisition process. For NS=5, Train(%)=75 the linear 

correlation coefficient and sum of absolute difference reach the 

optimal values in the experiments. The LCC (0.8068 0.8166 

0.9016 0.9212) values show that the algorithm matches well 

with human subjective opinions of image quality. 

 

We believe that the current approach may not be ideal. The 

algorithm should also be widely compared with other methods. 

Future work will involve finding more effective quality indices 

according to the characteristics of RS image in urban area. 

Under our framework more experiments should also be done to 

make comparisons. 

 

 

4. CONCLUSION 

In this paper, we proposed a general-purpose image quality 

assessment method for RS image of urban areas. This is 

achieved by using two types of image features in multi scales. 

One is from the shape of histogram the other is from the natural 

scene statistics. A 20-D feature vector for each scale is extracted 

and is assumed to capture the RS image quality degradation 

caused mainly by cloud and mist. We use SVM to learn to 

predict image quality scores from these features. And the results 

show the correlation of the predicted scores and the subjective 

perception. 
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