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Abstract

The significance of estimating the spatial variability of the hydraulic conductivity K in
natural aquifers is relevant to the possibility of defining the space and time evolution of
a non-reactive plume, since the transport of a solute is mainly controlled by the hetero-
geneity of K . At the local scale, the spatial distribution of K can be inferred by com-5

bining the Lagrangian formulation of the transport with a Kalman filter-based technique
and assimilating a sequence of time-lapse concentration C measurements, which, for
example, can be evaluated on-site through the application of a geophysical method.
The objective of this work is to compare the ensemble Kalman filter (EnKF) and the
ensemble smoother (ES) capabilities to retrieve the hydraulic conductivity spatial distri-10

bution in a groundwater flow and transport modeling framework. The application refers
to a two-dimensional synthetic aquifer in which a tracer test is simulated. Moreover,
since Kalman filter-based methods are optimal only if each of the involved variables fit
to a Gaussian probability density function (pdf) and since this condition may not be met
by some of the flow and transport state variables, issues related to the non-Gaussianity15

of the variables are analyzed and different transformation of the pdfs are considered
in order to evaluate their influence on the performance of the methods. The results
show that the EnKF reproduces with good accuracy the hydraulic conductivity field,
outperforming the ES regardless of the pdf of the concentrations.

1 Introduction20

One of the most challenging tasks in groundwater flow and transport modeling is the as-
sessment of hydraulic properties of the porous media such as the hydraulic conductivity
(K ), whose spatial heterogeneity is typically very pronounced in natural aquifers and
thus particularly difficult to characterize. For this reason, many efforts have been made
for the development of inverse models capable to estimate aquifer hydraulic properties25

at various scales. Extensive reviews of these methods have been provided by Carrera
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et al. (1993); McLaughlin and Townley (1996); Zimmerman et al. (1998); Vrugt et al.
(2008). Hydraulic conductivity and head data have been typically used to constrain in-
verse models (e.g. Chen and Zhang, 2006; Hendricks Franssen and Kinzelbach, 2008).
More recently, the use of information derived by geophysical methods has been in-
creasingly proposed and investigated for the estimation of parameters in groundwater5

modeling (e.g. Camporese et al., 2011; Pollock and Cirpka, 2012).
Among the several mathematical tools available for the inversion of hydrologic data,

Bayesian methods such as the ensemble Kalman filter (EnKF) and its variations
(Evensen, 2009b) allow for seeking an ensemble of independent samples conditional
to the measurements, all representing equally likely realizations of the actual variability10

of the hydraulic parameters. These methods have been applied, for example, by: Chen
and Zhang (2006), who used the EnKF to estimate the hydraulic conductivity both in
two- and three-dimensional domains assimilating hydraulic head data and K measure-
ments; Liu et al. (2008), who obtained the K distribution at the MADE site (e.g. Boggs
et al., 1992) by assimilating, in two subsequent steps, hydraulic head and concen-15

tration data collected during a tracer test; and Bailey and Baú (2010), who used the
ensemble smoother (ES) by assimilating hydraulic head and groundwater return flow
volume measurements to estimate the hydraulic conductivity distribution in a synthetic
two-dimensional case.

More recently, Hendricks Franssen et al. (2011) applied the EnKF to jointly calibrate20

the hydraulic conductivity and leakage coefficient in real-time in an unconfined aquifer.
In Li et al. (2012), the EnKF was used to map the hydraulic conductivity and porosity
fields by assimilating dynamic piezometric data and multiple concentration data. In
Bailey and Baú (2012), the ES was iteratively applied to estimate the parameters of
a geostatistical model through assimilation of water table elevation data. Tong et al.25

(2012) used the EnKF in a synthetic two-dimensional aquifer to estimate the hydraulic
conductivity by assimilating solute concentration data measured in a large number of
observation wells.
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Given the importance that EnKF and ES have gained in recent years as parameter
estimation modeling tools in groundwater hydrology, there is the need to investigate
in more detail their capabilities and the theoretical implications related to their use in
a context that is much different from the one for which they were originally developed,
i.e. the optimal estimation of system states only. The objective of this work is thus to5

compare the EnKF and ES capabilities to retrieve the hydraulic conductivity spatial
distribution in a groundwater flow and transport modeling framework. Moreover, since
a fundamental hypothesis for the application of Kalman filter-based methods is that
all the variables must be distributed as a Gaussian probability density function (pdf),
the issues related to various transformations of the relevant pdfs are analyzed. EnKF10

and ES are here implemented in the same Lagrangian transport modeling framework
proposed by Crestani et al. (2010) and Camporese et al. (2011), in order to estimate
the hydraulic conductivity field by assimilating concentration measurements derived
from a tracer test in a two-dimensional synthetic aquifer. We hypothesize to follow the
full spatio-temporal evolution of the solute plume, which may be obtained, for example,15

by means of electrical resistivity tomography experiments (e.g. Perri et al., 2012).

2 Theory and methods

2.1 The ensemble Kalman filter and the ensemble smoother

According to Evensen (2009a), the combined parameter and state estimation problem
for a dynamical model can be formulated as finding the joint pdf of the parameters20

and model state, given a set of measurements and a dynamical model with known
uncertainties. Using Bayes theorem, the problem can be written in the simplified form

f
(
y,α |z

)
= γf (y,α ) f

(
z|y,α

)
, (1)

where f (y,α ) is the joint pdf for the model state y (as function of space and time) and25

the parameters α , f (z|y,α ) is the likelihood function of the measurements z, and γ is
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a normalization constant whose computation requires the evaluation of the integral of
Eq. (1) over the multi-dimensional solution and parameter space. Note that in writing
Eq. (1) we implicitly assume that the only uncertainty in the model formulation lies in
the parameters, while boundary and initial conditions are perfectly known. If, as usual,
we work with a model state that is discretized in time, we can represent y at fixed time5

intervals as yi = y(ti ) with i = 0,1, . . . ,k. If we further assume that the model is a first-
order Markov process, we can define the pdf for the model integration from time ti−1
to ti as f (yi |yi−1,α ). Let us now assume that also the measurements z can be divided
into subsets of measurement vectors zi , collected at the same time steps of the model
ti and that the measurement errors are uncorrelated in time. Under these hypotheses10

and from Bayes theorem, Eq. (1) becomes (Evensen, 2009a)

f
(
y1, . . . ,yk ,α |z

)
= γf (α )

k∏
i=1

f
(
yi |yi−1,α

)
f
(
zi |yi ,α

)
, (2)

in which the pdf of the parameters f (α ) is expressed explicitly. Rewriting (Eq. 2) as
a sequence of iterations and integrating out the state variables at all previous times, we15

obtain

f
(
yi ,α |z1, . . . ,zi

)
= γf (α )f (yi |yi−1,α )f (zi |yi ,α ). (3)

The combined parameter and state estimation can thus be formulated sequentially
using Bayesian statistics, under the condition that measurement errors are indepen-20

dent in time and the dynamical model is a Markov process. Equations (1) and (3) can
be solved numerically by means of a Monte Carlo approach, which approximates the
probabilistic information conveyed by the conditional pdfs of the state, parameters, and
measurements with an ensemble of realizations of size NMC. Each of the NMC state
vectors is propagated in time according to the forecast model, which can be expressed25

as a vector-valued discrete-time state equation:

yj (t) = A[yj (τ),α j ,t,τ]; t0 ≤ τ < t; yj (t0) = y
j
0, (4)
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where y
j (t) is the j th (j = 1, . . . ,NMC) state vector predicted by the model at the time t,

α
j is the j th set of model parameters, A is the operator relating the system state at the

current time t to the system state at the previous time τ, and y
j
0 is the initial condition

at time t0.
At time ti , mi measurements are available and the model describing how these5

measurements and the system state are related is also expressed as a vector-valued
discrete-time measurement equation:

zj (ti ) = Hytrue(ti )+w j (ti ), (5)

where H is the operator that maps the model state to the measurements, ytrue(ti ) is10

the true state, and z
j (ti ) is the j th vector of observations at the time ti , which is ob-

tained perturbing the mi measurements with a random noise w
j (ti ), representing the

measurement errors. Here we assume that w j (ti ) is normally distributed with expected
value equal to zero and assigned variance σ2

meas. Under the hypothesis that the pdfs
for the model prediction as well as the likelihood are Gaussian, it is possible to up-15

date each realization of the system state according to the following equation, which is
obtained by minimizing the model error covariance matrix (Evensen, 2009a):

y
j
upd = yj +PeHT (HPeHT +Re)−1(zj −Hyj ), (6)

where y
j
upd is the j th realization of the updated system state, Pe is the prior estimate of20

the system state error covariance matrix, which is computed by sampling the ensemble
statistics, and Re is the measurement error covariance matrix.

Within the formulation of the ES, Eq. (1) requires that the pdfs are approximated
from an integration of the ensemble through the whole assimilation time period. In
other words, all of the data are processed by Eq. (6) in one step, and the solution is25

updated as a function of space and time, using the space-time covariances estimated
from the ensemble of model realizations.
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On the other hand, within the EnKF formulation, Eq. (3) is a sequential expression
that can be solved through incremental updates given by Eq. (6) with the data at the
current time step only.

Note that in both cases, when the model pdfs and the likelihood function are Gaus-
sian, the Bayesian formulation corresponds to the minimization of a quadratic cost5

function (Evensen, 2009a). The only difference is that in ES the time dimension is
included in the optimization, while in EnKF the minimization is performed at each as-
similation time. However, when the pdfs are not Gaussian, Eq. (6) is an approximation
and no longer yields optimal updates in terms of a cost function minimization, although
the general Bayesian formulation remains valid, i.e. sampling of a posterior pdf is still10

performed.

2.2 The inversion model

The Lagrangian approach described in Dagan (1989) is here adopted to describe
the movement of a tracer plume through a saturated, spatially heterogeneous porous
medium. As described in Crestani et al. (2010) and Camporese et al. (2011), the so-15

lute cloud is driven by the effective velocity field obtained at steady state solving the
groundwater flow equation with appropriate boundary conditions. In natural sedimen-
tary aquifers the spatial variability of the porosity φ can be considered negligible with
respect to that of K (e.g. Gelhar, 1993), so that the concentration C, related to the pdf
of the Lagrangian trajectory of equation x = Xt(t;a,t0), where a is the initial position20

of the considered particle and t0 the injection time, is fully controlled by the spatial
distribution of the hydraulic conductivity. Dealing with real applications, our interest is
related to the average concentration C over a finite volume ∆V whose centroid is at x.
By defining as M =φC0V0 the total mass of initial concentration C0 uniformly injected
in the volume V0, an estimation of the concentration value is given by:25
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C(x,t;t0) =
φ
M

∫
∆V

∫
V0

C0(a)δ[x′ −Xt(t;a,t0)]dadx′

=
1

N∆V

∫
∆V

N∑
i=1

δ[x′ −Xt(t;a,t0)]∆adx′, (7)

where N is the number of particles released to simulate the solute and δ is the Dirac
delta function.5

The problem of estimating the hydraulic conductivity field by using concentration
measurements is solved by considering a system state in which we retain only the
model parameters:

yj = [Y1, . . . ,Yn]j = α j , (8)
10

where Y1, . . . ,Yn are the log-transformed hydraulic conductivity values (Y = lnK ) at the
n nodes discretizing the domain. At time t0, NMC realizations of the log-transformed
hydraulic conductivity field are generated from a prior f (α ) and the state vectors are
built as in Eq. (8).

In the EnKF application, starting with the the same initial concentration C0 for each15

Y field, the solute plume is propagated forward in time to the first measurement time t1,
using the Lagrangian transport model. At time t1 the log-transformed hydraulic conduc-
tivities (Y1, . . . ,Yn)j are updated based on the m1 measurements available by means
of Eq. (6), which leverages to the cross-correlation between Y and C, expressed by
the product PeHT . The process continues sequentially: first a propagation step over20

each interval between t0 and ti and then an update step of the log-transformed hy-
draulic conductivity values at each measurement time ti . The process stops at the time
corresponding to the last measurement ttm. It must be observed that, in order to en-
sure mass conservation throughout the simulation, after every assimilation step the
plume evolves in the updated Y fields starting from t0 and with the same initial solute25
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distribution. This recursive application of the EnKF differs from the classic sequential
one commonly adopted, since by restarting the plume evolution with the same initial
concentration in updated Y fields, we apply the predictive analysis expressed by the
Kalman gain on a system state that is improved at each assimilation step.

In the ES application, there is no need for sequential updates and the parameters are5

estimated in a single off-line step. At time t0, each realization of the ensemble of NMC
Y fields is initialized with the same concentration distribution C0 and the solute plume
is propagated forward in time until the last assimilation time, and the concentration
distributions for all measurement times are recorded. The measurement vectors are
thus assembled as10

zj = [z(t1),z(t2), . . . ,z(ttm)]j
T
, (9)

i.e. the perturbed measurements for all the measurement times (tm) are stored in a vec-
tor of dimension [

∑tm
i=1mi ], for each Monte Carlo simulation. Since the ES does not

require sequential updates, the computational time is expected to be significantly lower15

than in the EnKF, even though the dimension of the vectors and matrices in Eq. (6) is
significantly larger than in EnKF.

For both EnKF and ES, the numerical computation of the update step implemented
in this study follows the square root algorithm developed by Evensen (2004).

3 Numerical experiments20

3.1 Model setup

A two-dimensional reference Y field is considered to compare the proposed inversion
models in a number of numerical experiments. The domain has dimensions of 8L×8L,
where L is an arbitrary and consistent unit length, and it is discretized along each
direction into L/4 sided cells, for a total of 33×33 = 3297 corresponding nodes. By25

assuming Y = ln(K ), the multivariate normal Y distribution of the reference field is the
13091
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result of a single unconditional generation conforming to an isotropic exponential co-
variance model with spatial mean 〈Y 〉 = 0.35, variance of σ2

Y = 0.42, and integral scale
λ = 1L. The random function Y is generated by an improved sequential Gaussian sim-
ulation algorithm (Baú and Mayer, 2008). The flow field is simulated using a standard
finite volume solver at steady state with appropriate boundary conditions that ensure5

a constant mean gradient. The resulting Eulerian velocity field is used for the compu-
tation of the trajectories of N particles suitable for the simulation of a contaminant re-
lease. Dirichlet boundary conditions are applied at x = 0L (h = 100.0L) and at x = 8L
(h = 95.2L), while Neumann no-flow boundary conditions are imposed along the re-
maining sides of the domain. A graphic representation of the reference field is given10

in Fig. 1. A tracer test is simulated by assuming an instantaneous solute injection with
initial transversal size of 6L (from y = 1L to y = 7L) and longitudinal size of 0.5L (cen-
tered in x = 0.875L). The solute is simulated by 16983 particles uniformly distributed,
with the particle trajectories computed by means of the Pollock’s particle tracking post-
processing algorithm (Salandin et al., 2000) and the concentration computed according15

to Eq. (7) every 0.5T, where T is any consistent time unit. Figure 2 shows the plume
evolution in the reference field at t = 2T and t = 4T.

In this work, the inversion is carried out by assimilating concentration data. In particu-
lar, we include in the measurement vectors all the concentration data greater than zero,
in order to use all the available information on the plume evolution. The performances20

of EnKF and ES in retrieving the Y fields are compared to one another in a number
of different scenarios described in Table 1. In these scenarios we also analyze the
implications of the concentration non-Gaussianity through various transformations of
the pdf. The prior geostatistical parameters and the measurement uncertainty are kept
constant in all scenarios, as the objective is to study the issues related to the effect25

of the pdf of the model variables on the EnKF and the ES performances in terms of
parameter estimation. In scenario 1 the concentration data are assimilated without any
transformation, i.e. with their original pdf, whereas in scenarios 2, 3, and 4 different
pdf transformations are used to evaluate how they affect the parameter estimation by
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approaching the Gaussian requirement. Based on preliminary sensitivity analyses, all
scenarios are simulated using an ensemble size of 2000. This number of realizations is
computationally affordable and guarantees a proper description of the dispersion pro-
cess for the range of log-transformed hydraulic conductivity variance used here (Bellin
et al., 1992; Salandin and Fiorotto, 1998).5

It should be noted that the ensemble of prior Y fields is synthetically generated by the
same algorithm used to create the true field and that the application of the Lagrangian
transport model in the true field yields exactly the true concentration distribution. The
knowledge of the true state allows us to select the concentration measurements used
during the assimilation and to evaluate the performance of EnKF and ES with respect10

to a known reference.
The estimate of the hydraulic conductivity fields in the various simulated scenarios

is assessed by means of the root mean square error (RMSE) of the ensemble mean,
computed as

RMSE =

√∑n
i=1(Ysim,i − Ytrue,i )2

n
, (10)15

where n is the total number of nodes of the discretized domain, Ysim,i is the ensemble
mean of the Y values estimated at the i th node, and Ytrue,i is the true Y value at the i th
node.

Finally, we also assess the plume evolution as simulated in the reconstructed Y fields20

by means of the concentration RMSE, whose formulation is analogous to that of Y .

3.2 Results

3.2.1 Scenarios with untransformed concentration pdfs

In scenarios 1a and 1b, the concentration values are assimilated in the update pro-
cedure without modifying their original pdf, for both the EnKF and the ES. The spatial25

13093

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/9/13083/2012/hessd-9-13083-2012-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/9/13083/2012/hessd-9-13083-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
9, 13083–13115, 2012

EnKF vs. ES for
tracer test data

assimilation

E. Crestani et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

distributions of Y resulting from the inversions are reported in Fig. 3. The comparison
between the retrieved fields and the reference field (Fig. 1) shows that the EnKF is
quite effective in estimating the lnK field, whereas the ES performs rather poorly.

In these scenarios, both EnKF and ES are affected by the approximations related to
the Gaussian assumption of Eq. (6), as the tracer concentration pdf at early travel times5

departs significantly from the normal pdf (e.g. Salandin and Fiorotto, 1998). Neverthe-
less, EnKF can handle these approximations better than ES, as, at each update, the
realizations are steered toward the true solution and the Gaussian increments of the
ensemble members lead to an approximately Gaussian ensemble distributed around
the true solution. This property of the sequential updating is not exploited in the ES,10

where realizations evolve freely until the end of the simulation, exacerbating the effects
related to non-Gaussian ensemble distributions. A further explanation for the good per-
formance of the EnKF can be found in our recursive application, through which, at each
assimilation step, the plume is restarted with the same initial concentration in the up-
dated Y fields. This procedure is analogous to the advanced first-order second-moment15

(AFOSM) method adopted in risk analysis (Yen et al., 1986). As in AFOSM, also in our
EnKF application the lack of Gaussianity is overcome by approaching recursively the
solution with improved values of the estimator (the Kalman gain) corresponding to im-
proved estimates of the solution itself.

3.2.2 Scenarios with log-transformed concentration pdfs20

In order to evaluate if a proper rearrangement of the concentration pdf can improve the
results, in scenarios 2a and 2b we assimilate log-transformed concentration values.
Although previous analyses highlight that Beta-type pdfs can be effectively used to
reproduce the concentration distribution (Caroni and Fiorotto, 2005), the log-normal
pdf is easier to handle and often represents a reasonable assumption (e.g. Bellin et al.,25

1994; Zhang et al., 2000).
Figure 4 shows the Y fields estimated by EnKF and ES when assimilating

log-transformed concentration measurements. The EnKF produces again a good
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reproduction of the true hydraulic conductivity field, with only small differences com-
pared to the results of scenario 1a, while the ES confirms its difficulty in retrieving
the Y spatial distribution. Nonetheless, the comparison between scenarios 1b and 2b
shows a slight improvement of the ES solution, indicating that the ES is more sensitive
than the EnKF to the pdf of the assimilated variable.5

3.2.3 Scenarios with normal score-transformed concentration pdfs

Since the log-transformation of concentration values does not ensure a normal pdf in
all cases, in scenarios 3a and 3b another type of transformation is applied to the con-
centration data. Here a Gaussian pdf of the C values is obtained by applying a normal
score transform (NST) (Zhou et al., 2011). The NST is a tool through which any cu-10

mulative probability distribution function (CDF) F (x) is mirrored to the standard Gaus-
sian CDF G(y). In other words, the generic variable x of the F (x) distribution can be
transformed into the corresponding normally distributed variable y through the relation
F (x) = G(y), i.e. y = G−1[F (x)]. In this case x = C and a CDF is built for each node of
the domain with the ensemble of C values simulated by the model, using the Hazen15

formula F (C) = (i −0.5)/NMC, where i = 1, . . . ,NMC is the rank of the concentration
values after sorting the data in ascending order. For each node, different values of C
are univocally associated to the CDF values, which are always the same and depend
only on NMC.

The results obtained by assimilating normal score-transformed concentration data20

are reported in Fig. 5 for both EnKF and ES. Despite the Gaussian distribution of the
model variables, the retrieved fields are not satisfactory for both the techniques and,
compared to the results of scenarios 1a and 2a, even the EnKF performs poorly.

Since in scenario 3 the approximations related to the Gaussian assumption are re-
moved, the results seem to suggest that the NST might corrupt the cross-correlation25

structure between Y and C in the measurement locations. Indeed, when the C values
are log-transformed, the relation that maps the original pdf of C to the transformed one
is the same for all the different positions in space and thus the correlation structure is
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conserved. This is not the case for scenario 3, where a different NST is independently
applied to the concentration ensemble at each node.

In order to illustrate this point, the C− Y cross-correlation structures, evaluated in
the measurement nodes by means of the product PHT in Eq. (6), are compared for
scenarios 1 and 3. The cross-correlation structures for scenario 1 at time t = 2T and5

t = 4T are reported in panels a and b of Figs. 6 and 7, respectively, while panels c
and d of the same Figures refer to scenario 3. The analysis considers only the lon-
gitudinal behavior of the cross-correlation, by reporting in the figures only the results
calculated along the direction shown with a dotted line in Fig. 2. Firstly, we note that
there are relevant differences between the EnKF and ES cross-correlation structures.10

The EnKF cross-correlation behavior shows always higher values at the origin (zero
lag) and a rapid decay with increasing lag, i.e. moving away from the measurement
location. This confirms that the effectiveness of the EnKF is limited in a portion of the
domain around the measurement location (Camporese et al., 2011). With ES, the peak
of correlation at the measurement location is usually smaller than with EnKF, and the15

cross-correlation structure is more spread out. As the cross-correlation between Y and
C is usually significant only for a limited lag distance, proportional to the product of the
Y integral scale and the length of the area covered by the plume, the relatively high
correlation values characterizing the ES results at large lags are probably spurious.
Also for this reason the result of the ES inversion is a smoothed Y field. Secondly,20

when the NST is applied (compare panels c and d with a and b in Figs. 6 and 7), there
is an overall decrease of the peaks and the cross-correlation structures are even more
smoothed, showing the significant alterations caused by the transformation.

3.2.4 Scenarios with modified normal score-transformed concentration pdfs

In order to maintain the original Y –C cross-correlation structure and, at the same time,25

to work with Gaussian pdfs, a modified application of the NST is proposed. At every
time step, only one cumulative distribution function is built by using the concentra-
tion values simulated in all the measurement nodes. We underline that this is different
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from the previous application of the NST, in which a relation between C and its CDF
is defined in each node independently. Now the CDF F (C), estimated at time ti , is
F (C) = (i −0.5)/(NMC×mi ), where mi is the number of measurement locations and
i = 1, . . . ,NMC×mi is the rank of the concentration values after sorting the data in
ascending order. With this modified application of the NST we obtain a satisfactory re-5

production of the Gaussian distribution in each node, and, by using an invariant trans-
formation, we do not alter the Y –C cross-correlation structure.

The results of the inversions, reported in Fig. 8 for both EnKF and ES, demonstrate
the effectiveness of the modified NST, as the estimated Y fields are now showing an
improvement (with respect to the prior fields) comparable to that in scenario 2 and look10

better than those of scenario 3. As in the previous scenarios, EnKF outperforms ES,
which, however, shows significant improvements and seems to benefit more from the
application of the modified NST.

3.3 Discussion

In Fig. 9, the results of all the scenarios are summarized and compared in terms of15

root mean square errors of both Y and C vs. time. All of the observations made in
the previous sections, which were based merely on visual comparison, are confirmed
by the RMSE profiles. The EnKF consistently outperforms the ES, regardless of the
adopted concentration pdfs, except for scenario 3a, in which the NST deteriorates the
EnKF solution due to alterations of the Y –C cross-correlation structure. This result,20

which reveals the inadequacy of the NST for this application, is in accordance with the
conclusions drawn by Schöniger et al. (2012). In their work, Schoeniger et al. applied
the NST in conjunction with the EnKF to assimilate aquifer drawdown measurements
and showed that the dependence between these data and the parameters is higher
than the one between concentrations and parameters. The ES is more sensitive to the25

transformations applied to the assimilated data, as indicated by the RMSE of Y in the
various scenarios, even though the same sensitivity is not reflected by the C RMSE
(Fig. 9).
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Overall, the problem of retrieving the hydraulic conductivity field through the assim-
ilation of concentration measurements is better handled by EnKF, due to the violation
of Gaussianity investigated earlier with the different scenarios and to the high nonlin-
earity of the problem under consideration. With EnKF, the Y fields are progressively
updated and the simulated plumes gradually converge towards the true one. With ES,5

the plumes evolve freely in the prior fields until the end of the simulation and, conse-
quently, their evolution is very different from the true one, especially at late times. To
highlight this point, the true plume evolution at t = 2T and t = 4T (Fig. 2) is compared
with the evolution of the ensemble mean of the plumes simulated in the prior fields
(Fig. 10). In Figs. 11 and 12 we also show the evolution of the ensemble average of10

the plumes as simulated in the Y fields estimated at t = 2T and t = 4T, respectively, in
scenario 1a (EnKF with original concentration pdfs). In other words, in Fig. 11 EnKF is
applied only until t = 2T and thereafter the plumes are let to evolve in the estimated Y
fields. The progressive correction of the mean simulated plume is evident and already
at t = 2T it is very similar to the true one. With ES, instead, there are no recursive15

updates that modify the ensemble to resemble the true Y field and the nonlinearity of
the problem cannot be captured.

4 Summary and conclusions

The present work investigated the capabilities of the EnKF and the ES to retrieve the
hydraulic conductivity spatial distribution through the assimilation of concentration mea-20

surements. The objective was to compare the performance of the two techniques and
to analyze the effects of the lack of Gaussianity in the system variables. A tracer injec-
tion was simulated in a two-dimensional domain representing a heterogeneous aquifer
and different scenarios were analyzed to determine how different transformations of the
concentration probability distribution impact on the inversion results. In the first scenar-25

ios the concentrations were assimilated in the model without any manipulation, while in
the other scenarios we took into account log-transformed data and two variants of the
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normal score transform (NST), analyzing also the cross-correlation structure between
log-transformed hydraulic conductivity Y and concentration C.

The main conclusion of our study is that EnKF can reproduce with good accuracy the
hydraulic conductivity field, consistently outperforming ES regardless of the probability
distribution of the concentrations. This is due to two reasons: (i) the lack of Gaussianity5

is overcome owing to the recursive Gaussian increments given by the EnKF updates
that eventually lead to an ensemble of members normally distributed around the true
solution; (ii) the same recursive procedure continuously pulls the realizations toward the
true solution, easing the inversion problem of the strong nonlinearity of the dispersion
process. The only case in which EnKF does not work properly is when NST is applied10

to ensure that the concentration pdf is Gaussian in each node of the domain. This is
due to the consequent alteration of the Y –C cross-correlation structure, which instead
must be correctly evaluated in order to assure the effectiveness of the EnKF inversion
procedure. This suggests that NST must be applied with caution in any Kalman-filter
based inversion scheme, checking at any time for possible corruptions of the cross-15

correlation between parameters and assimilation variables.
ES performs always worse than EnKF as it does not involve recursive updates of

the Y fields. This has two consequences: (i) the solute plumes are free to evolve in
the prior fields without corrections, eventually leading to significant differences from the
true plume evolution; (ii) non-Gaussian contributions in the concentration pdf are not20

kept under control.
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Table 1. Description, prior geostatistical parameters, and measurement errors of the numerical
experiments.

prior statistics

assimilated data technique < Y > σ2
Y λ (L) CVa

Reference field – – 0.03 0.43 1 –
Scenario 1a C EnKF −0.50 0.75 1 0.01
Scenario 1b C ES −0.50 0.75 1 0.01
Scenario 2a lnC EnKF −0.50 0.75 1 0.01
Scenario 2b lnC ES −0.50 0.75 1 0.01
Scenario 3a NST(C)b EnKF −0.50 0.75 1 0.01
Scenario 3b NST(C)b ES −0.50 0.75 1 0.01
Scenario 4a modNST(C)c EnKF −0.50 0.75 1 0.01
Scenario 4b modNST(C)c ES −0.50 0.75 1 0.01

a Measurement coefficient of variation.
b Normal score transform applied independently to the ensemble of concentration data in each
assimilation node.
c Normal score transform applied to the ensemble of concentration data over all assimilation nodes.
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Fig. 1. Spatial distribution of log-transformed hydraulic conductivity in the reference field. The
color bar indicates log-transformed hydraulic conductivity Y in ln(L T−1).
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Fig. 2. Plume evolution in the reference field at (a) t = 2T and (b) t = 4T. The color bar de-
notes dimensionless concentration C. Dotted lines show the direction along which the cross-
correlation structure between Y and C is evaluated.

13105

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/9/13083/2012/hessd-9-13083-2012-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/9/13083/2012/hessd-9-13083-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
9, 13083–13115, 2012

EnKF vs. ES for
tracer test data

assimilation

E. Crestani et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 3. Scenario 1: log-transformed hydraulic conductivity field retrieved by (a) EnKF and (b) ES
assimilating untrasformed concentration data. The color bar indicates log-transformed hydraulic
conductivity in ln(L T−1).
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Fig. 4. Scenario 2: log-transformed hydraulic conductivity field retrieved by (a) EnKF and (b) ES
assimilating log-transformed concentration data. The color bar indicates log-transformed hy-
draulic conductivity in ln(L T−1).
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Fig. 5. Scenario 3: log-transformed hydraulic conductivity field retrieved by (a) EnKF and
(b) ES assimilating normal score-transformed concentration data. The color bar indicates log-
transformed hydraulic conductivity in ln(L T−1).
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Fig. 6. Y –C cross-correlation at t = 2T for the nodes located at y = 5.75L in scenario 1a (a),
scenario 1b (b), scenario 3a (c) and scenario 3b (d). Each color corresponds to a correlation
structure centered at a different node sampled by the plume (see Fig. 2a).
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Fig. 7. Y –C cross-correlation at t = 4T for the nodes located at y = 5.75L in scenario 1a (a),
scenario 1b (b), scenario 3a (c) and scenario 3b (d). Each color corresponds to a correlation
structure centered at a different node sampled by the plume (see Fig. 2b).
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Fig. 8. Scenario 4: log-transformed hydraulic conductivity field retrieved by (a) EnKF and (b) ES
assimilating concentration data transformed with a modified normal score transform. The color
bar indicates log-transformed hydraulic conductivity in ln(L T−1).
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Fig. 9. Root mean square error of (a) the retrieved log-transformed hydraulic conductivity field
and (b) the concentration distribution in the retrieved field for the all scenarios.

13112

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/9/13083/2012/hessd-9-13083-2012-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/9/13083/2012/hessd-9-13083-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
9, 13083–13115, 2012

EnKF vs. ES for
tracer test data

assimilation

E. Crestani et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 10. Ensemble mean of the plume evolution at t = 2T and t = 4T in the prior Y fields. The
color bar denotes concentration.
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Fig. 11. Ensemble mean of the plume evolution at t = 2T and t = 4T in the Y field estimated at
t = 2T by EnKF in scenario 1a. The color bar denotes concentration.
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Fig. 12. Ensemble mean of the plume evolution at t = 2T and t = 4T in the Y field estimated at
t = 4T by EnKF in scenario 1a. The color bar denotes concentration.
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