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Abstract. Precipitation is a crucial variable for hydro-meteorological applications. Unfortunately, rain gauge measurements are 

sparse and unevenly distributed, which substantially hampers the use of in-situ precipitation data in many regions of the world. 

The increasing availability of high-resolution gridded precipitation products presents a valuable alternative, especially over gauge-10 

sparse regions. Nevertheless, uncertainties and corresponding differences across products can limit the applicability of these data. 

This study examines the usefulness of current state-of-the-art precipitation datasets in hydrological modelling. For this purpose, 

we force a conceptual hydrological model with multiple precipitation datasets in >200 European catchments. We consider a wide 

range of precipitation products, which are generated via (1) interpolation of gauge measurements (E-OBS and GPCC V.2018), (2) 

combination of multiple sources (MSWEP V2) and (3) data assimilation into reanalysis models (ERA-Interim, ERA5, and CFSR). 15 

For each catchment, runoff and evapotranspiration simulations are obtained by forcing the model with the various precipitation 

products. Evaluation is done at the monthly time scale during the period of 1984-2007. We find that simulated runoff values are 

highly dependent on the accuracy of precipitation inputs, and thus show significant differences between the simulations. By 

contrast, simulated evapotranspiration is generally much less influenced. The results are further analysed with respect to different 

hydro-climatic regimes. We find that the impact of precipitation uncertainty on simulated runoff increases towards wetter regions, 20 

while the opposite is observed in the case of evapotranspiration. Finally, we perform an indirect performance evaluation of the 

precipitation datasets by comparing the runoff simulations with streamflow observations. Thereby, E-OBS yields the best 

agreement, while furthermore ERA5, GPCC V.2018 and MSWEP V2 show good performance. In summary, our findings highlight 

a climate-dependent propagation of precipitation uncertainty through the water cycle; while runoff is strongly impacted in 

comparatively wet regions such as Central Europe, there are increasing implications on evapotranspiration towards drier regions. 25 

 

 

 

1. Introduction 

Precipitation is a key quantity in the water cycle since it controls water availability including both blue and green water resources 30 

(Falkenmark and Rockström, 2006; Orth and Destouni, 2018). This way, changes in precipitation translate into changes in water 

resources which could have severe impacts on ecosystems, and consequently economy and society (Oki and Kanae, 2006; Kirtman 

et al., 2013; Abbott et al., 2019). Changes in precipitation can be induced or intensified by climate change and consequently lead 

to amplified impacts (Blöschl et al., 2017; Blöschl et al., 2019b). Thus, accurate precipitation information is essential for 

monitoring water resources and managing related impacts. 35 
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Despite the necessity of accurate precipitation datasets, reliable gauge measurements are not widely available. Further, these 

measurements need to be corrected for potential errors such as wind-induced inaccuracies or precipitation undercatch, especially 

in higher altitudes (Mekonnen et al., 2015). Next to gauge measurements, precipitation information can be inferred from satellite 

observations and/or model simulations. Based on these sources, a variety of global gridded precipitation datasets have emerged. 

While some of these datasets make direct use of gauge measurements to interpolate them in time and space, others make indirect 40 

use of the gauge information to calibrate satellite retrieval algorithms or models, enabling them to estimate gridded large-scale 

precipitation. 

Across these datasets, there are ample discrepancies in space and time, highlighting the need for comparative assessments (e.g. 

Koutsouris et al., 2016; Alijanian et al., 2017, 2019; Balsamo et al., 2018; Sun et al., 2018; Massari et al., 2019; Levizzani and 

Cattani, 2019; Fallah et al., 2019; Satgé et al., 2020). In particular, indirect evaluation of the datasets through application in 45 

hydrological modelling is a valuable alternative in this context, as precipitation is translated into variables with more (reliable) 

large-scale observations such as runoff (Thiemig et al., 2013; Nerini et al., 2015; Beck et al., 2017a,b,2019a,b; Arheimer et al., 

2019; Fereidoon et al., 2019; Bhuiyan et al., 2019; Mazzoleni et al., 2019). However, while this approach relies on the propagation 

of precipitation uncertainty into runoff it is largely underexplored when and where this propagation pathway is active. Vice versa, 

it is unclear in which regions or conditions, gridded datasets of runoff (Gudmundsson and Seneviratne, 2016) or evapotranspiration 50 

(e.g. Martens et al., 2017; Jung et al., 2019) are impacted by the existing precipitation uncertainties. 

In this study, we investigate the uncertainty across six widely used gridded precipitation datasets, including its propagation into 

the hydrological cycle, i.e. runoff and evapotranspiration (ET). Thereby, we consider gauge-interpolated (E-OBS, GPCC V.2018), 

multi-source (MSWEP V2), and reanalyses (ERA-Interim, ERA5, CFSR) datasets. With each of them, we force a conceptual land 

surface model and compare the respectively simulated runoff and ET. This is done separately for different hydro-climatological 55 

regimes. In addition, validating the runoff simulations against respective observations we can indirectly infer the performance of 

the precipitation datasets. This further allows us to obtain guidelines with respect to the usefulness of the different types of 

precipitation products in the considered regimes.   

Section 2 introduces the reference, forcing datasets and model calibration used in the study, and Section 3 illustrates results and 

discussion. Finally, in Section 4 the conclusions of this study are presented. 60 

2. Data and methodology 

2.1. Forcing data 

Runoff and ET are modelled with a conceptual hydrological model, the Simple Water Balance Model (SWBM). The underlying 

framework was initially presented by Koster and Mahanama 2012 where runoff (normalised by precipitation) and ET (normalised 

by net radiation) are assumed to be polynomial functions of soil moisture (Whan et al., 2015). We use here the model version 65 

introduced by Orth and Seneviratne 2013. As inputs, the model uses temperature, net radiation, and precipitation. For each 

catchment, temperature and net radiation are used from the respective grid cells from the E-OBS (Haylock et al., 2008) and ERA-

Interim (Dee et al., 2011) datasets, respectively. Corresponding grid cell-based precipitation data is used from various datasets 

derived from different sources: gauge-based (E-OBS, GPCC V.2018), multi-source (MSWEP V2) and reanalysis datasets (ERA-

Interim, ERA5, CFSR). A summary of all precipitation datasets and their respective characteristics is shown in Table 1.  70 

Before using the precipitation datasets to force the SWBM, they are re-gridded to a common 0.5° spatial resolution, if necessary. 

This was done through conservative remapping which preserves the water mass (Jones, 1999) using climate data operators 
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(Schulzweida, 2019). While the SWBM simulations are performed with a daily time step, we focus on monthly averaged data 

throughout the analyses in this study to mitigate the influence of synoptic weather variability.   

2.2. Reference data 75 

Modelled runoff is evaluated against monthly mean streamflow observations obtained from 426 catchments distributed across 

Europe (Stahl et al., 2010). These data are available for the period 1984-2007. There is no or little human influence on the 

streamflow in these catchments, which are mostly between 10-100 km2 in size.  

2.3. Model calibration 

In a first step, the best possible model performance was determined in each catchment to test the respective applicability of the 80 

model. For this purpose, the model is calibrated against streamflow observations in each catchment. The >400 catchments are 

distributed across Europe, and across different hydro-climatological regions (Fig. 1). The agreement between modelled and 

observed runoff is determined by computing the Nash-Sutcliffe efficiency (NSE, Nash and Sutcliffe, 1970) using monthly data 

during 1984-2007. Only catchments where NSE>0.36 (Motovilov et al., 1999; Moriasi, 2007) are retained for the further analyses, 

which leaves 243 catchments that are well distributed across the continent. 85 

As shown in Fig. 1, the hydro-climatological regime is characterised through long-term average temperature and aridity (Budyko, 

1974). Thereby, for each catchment, the temperature derived from the E-OBS dataset, and aridity is computed as the ratio of mean 

annual net radiation to mean annual precipitation calculated from ERA-Interim and E-OBS respectively. 

In each of the 243 catchments, the SWBM is forced with temperature, net radiation and the different precipitation datasets, 

respectively (Fig. 2). This way, six simulations with the six different precipitation datasets are performed for each catchment, 90 

leaving the temperature and net radiation data unchanged. The model parameters are thereby obtained from the above-mentioned 

calibration using E-OBS precipitation.  

All analyses are performed during the warm season (May-September) to exclude the impact of snow and ice, and because ET is of 

minor relevance during cold months. 

 95 

 3. Results and discussion 

3.1. Impact of precipitation uncertainty on runoff and ET 

Figure 3 illustrates the propagation of precipitation uncertainty into simulated runoff and ET. Each point denotes the standard 

deviation across the six simulations obtained with the different precipitation datasets and represents a particular month in a specific 

catchment. Runoff simulations are strongly influenced by precipitation uncertainty while the ET simulations are much less 100 

influenced by precipitation uncertainty, as indicated by the regression slope. The strong relationship between runoff and 

precipitation is in line with previous studies (e.g. Beck et al., 2017a,b; Sun et al., 2018, Blöschl et al., 2019b). It is related to the 

fact that most of the considered catchments are located in relatively wet climate (aridity<1) such that soils are often saturated, 

triggering a rather direct runoff response to precipitation. Also, in these climate regimes ET is typically energy-controlled rather 

than water-controlled (Pan et al., 2019), leading to the observed low sensitivity of ET to precipitation (uncertainty).  105 

3.2. Climate-dependent propagation of precipitation uncertainty 
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In addition to examining the role of precipitation uncertainty for runoff and ET across all considered catchments, we analyse this 

uncertainty propagation within individual hydro-climatological regimes (Fig. 4). For this purpose, we compute the median of the 

standard deviations from catchments within each regime, considering all respective warm season months. As shown in Fig. 4a, the 

precipitation uncertainty is higher in comparatively cold and wet regions. This could be related to especially sparse gauge networks 110 

and more intense rainfall in these regions which are known to increase precipitation uncertainty (Dinku et al., 2008; Hu et al., 

2016; Beck et al., 2017b; O and Kristetter, 2018). 

Similarly, Figs. 4b and 4c illustrate the fraction of precipitation uncertainty propagating into runoff and ET, respectively. 

Interestingly, we find systematic variations in this uncertainty propagation with respect to climate. In wet and cold regions, 

precipitation uncertainty almost exclusively affects runoff whereas ET remains unchanged; Towards drier and warmer climate the 115 

uncertainty propagation shifts, affecting runoff less and increasingly influencing ET. 

Figure S1 shows the number of catchments located within each hydro-climatological regime. Only boxes with >5 catchments are 

considered in the analysis. The uneven distribution of catchments across the regimes induces higher uncertainties in the results 

obtained for the wettest and driest regimes.   

As the calibration of the SWBM using E-OBS precipitation data (see Section 2.3) can induce biases in our analyses, we re-compute 120 

Figure 4 using model parameters obtained from calibration with GPCC V.2018 precipitation forcing, the results are shown in 

Figure S2. The clear similarity between Figures 4 and S2 suggests minor relevance of the precipitation dataset used in the SWBM 

calibration. Further, we repeat the uncertainty propagation analysis using all months instead of focusing on the warm season, also 

showing similar results (Figure S3). 

3.3. Indirect validation of precipitation dataset qualities 125 

Given the preferential propagation of precipitation uncertainty to runoff in the considered European catchments, we focus in the 

following on runoff only. In this context, we use streamflow measurements from the catchments to validate the modelled runoff, 

which allows us to draw conclusions also on the usefulness of the employed precipitation forcing datasets. For the runoff validation, 

we consider the correlation of monthly anomalies in each catchment and the absolute bias. To obtain anomalies, we remove the 

mean seasonal cycle from the observed and modelled runoff time series of each catchment. The six runoff simulations in each 130 

catchment are then ranked with respect to (i) correlation and (ii) bias, and the sum of these 2 ranks is used to obtain an overall 

ranking of runoff simulations and corresponding precipitation forcing datasets in each catchment. 

Figure 5 shows the number of catchments in which each precipitation product yields the best-ranked runoff simulation. Our findings 

show that overall the performance of modelled runoff is clearly dependent on the employed precipitation product. This is expected 

given the considerable disagreement between precipitation products, and the preferential propagation of this uncertainty to runoff 135 

(Fig. 4). Generally, runoff computed with E-OBS precipitation agrees best with observations. Also, ERA5, MSWEP V2, and GPCC 

V.2018 yield comparatively good runoff estimates. In contrast, runoff simulations obtained with ERA-Interim and CFSR agree 

less well with observations. Repeating this evaluation with all months (Fig. S4) and GPCC-derived SWBM parameters (Fig. S5) 

largely confirms the described results.  

Furthermore, we compute runoff performance assessments separately for anomaly correlation and absolute bias (Fig. S6). This 140 

reveals that the performance of the precipitation datasets is rather similar in terms of resulting runoff biases. Only ERA5 seems to 

lead to reduced biases compared with the other products, probably as it does not suffer from gauge-based precipitation undercatch. 

In contrast, there are considerable differences in terms of the runoff anomaly correlation performance across the products. This 
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reveals that the differences across products shown in Fig. 5 are mostly resulting from contrasting performance with respect to 

runoff anomaly correlation. 145 

Figure 6 shows the runoff performance resulting from the various precipitation products for the previously considered hydro-

climatological regimes. We find remarkable performance differences across the regimes, suggesting differential usefulness of 

precipitation products for hydrological modelling across different climate zones. Also, we can identify regimes where the 

precipitation products perform particularly well or not. For example, MSWEP V2 leads to strong agreement between modelled 

and observed runoff mostly in comparatively cold and wet climate and less so in warmer and drier regimes. This might be related 150 

to problems of the products incorporated in MSWEP in capturing convective rainfall in warm and dry regions while this is less  

problematic in colder regions (Ebert et al., 2007; Beck et al., 2017a,b; Massari et al., 2017; Fallah et al., 2019). The opposite 

performance pattern is observed for GPCC V.2018. The lower performance in cold climate, which is also present in the case of E-

OBS, might be related to smaller gauge network density, and more complex topography in colder areas (Ziese et al., 2018). For 

the other products such as CFSR and ERA-Interim, the performance is less dependent on the hydro-climatological regime. 155 

 

4. Conclusions 

In this study, we investigate how the remarkable discrepancy across state-of-the-art gridded precipitation datasets propagates 

through the water cycle. This is essential for hydrological modelling and the applicability of resulting simulations of water balance 

components such as runoff or ET. Our findings reveal that the uncertainty across precipitation datasets propagates mainly into 160 

runoff rather than ET simulations in Europe. In addition, the partitioning of precipitation uncertainty between runoff and ET is 

climate-dependent. In comparatively cold and wet regions such as Europe runoff is more impacted, whereas in drier and warmer 

regions the uncertainty partitioning shifts towards ET. 

The results in this study are obtained with a single model and are potentially dependent on the choice of that model. Even though 

this model has been validated thoroughly and applied in previous studies (Orth and Seneviratne, 2014; Orth et al., 2015; Orth and 165 

Seneviratne, 2015, O et al., 2019), future research needs to explore precipitation error propagation with other models (as in Bhuiyan 

et al., 2019). This should particularly include distributed models adding to our use of a lumped scheme. However, we do obtain 

similar results with different calibrations of this model, while previous research indicated that differences across model calibrations 

can be similar to that across models (Tebaldi and Knutti, 2007).  

The strong link between precipitation and runoff in Europe allowed us to perform an indirect validation of precipitation products 170 

through the performance of the respectively modelled runoff. Overall, the E-OBS precipitation dataset yields the most reliable 

streamflow simulations in Europe. Weaker but still comparatively good agreement between modelled and observed streamflow is 

obtained with ERA5, GPCC V.2018 and MSWEP V2. Thereby the products differ mostly with respect to the temporal dynamics 

rather than the overall amount of precipitation. The interpolated products overall outperform the satellite-derived products in 

Europe. This is probably due to the high density of gauge observations, as previous research found contrasting conclusions in 175 

regions with low gauge density (e.g. Thiemig et al., 2013 for Africa). Further, we study the precipitation product performance with 

respect to climate. We find systematic variations for datasets like MSWEP and GPCC whereas ERA5, ERA-Interim, and CFSR 

perform more similarly across climate regimes. Revealing climate-dependent accuracies in some precipitation datasets supports 

focused development of these products. This way, innovative hydrological validation of precipitation data, in addition to direct 
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validation against ground truth, can contribute to address the still considerable uncertainty across state-of-the-art gridded products 180 

in future efforts. 

Further, these findings allow a more targeted combination of products to compensate for individual weaknesses and preserve 

respective strengths. The climate-dependent (propagation of) precipitation uncertainties illustrates that there is no best overall 

product but instead a careful regional, climate-based selection can support hydrological applications. Overall, these findings 

highlight the usefulness of streamflow measurements capturing truly large-scale hydrological dynamics which can even be used 185 

to make inference on the accuracy of precipitation datasets (Behrangi et al., 2011; Thiemig et al., 2013; Beck et al., 2017a, 2019a; 

Arheimer et al., 2019; Bhuiyan et al., 2019; Mazzoleni et al., 2019).  

Another important outcome of our analyses is that ET simulations are mostly insensitive to precipitation uncertainty in European 

climate, confirming previous studies (Bhuiyan et al., 2019). However, in warmer and drier regions such as the Middle East, Central 

North America or Australia, the link between ET and precipitation should be stronger. Wherever available in these regions, ET 190 

measurements can and should be used for indirect evaluation of large-scale precipitation products to complement the results in this 

study where we focused more on comparatively wet regions.  

Moreover, our findings suggest that, across Europe and regions with similar climate, gridded runoff datasets (e.g. Gudmundsson 

and Seneviratne, 2016) inevitably suffer from the existing uncertainty in state-of-the-art precipitation datasets, although this 

depends on the extent to which they rely on precipitation data. In contrast, gridded ET products (e.g. Martens et al., 2017, Jung et 195 

al., 2019) are not impacted by precipitation uncertainty in these regions. In warmer and drier regions, however, the gridded ET 

products are more challenged than the runoff products. 

Overall, our findings highlight the important role of precipitation accuracy and the understanding of the propagation of existing 

inaccuracies through the water cycle. Revealing the climate-dependency of this propagation, this study contributes to improved 

modelling and monitoring of water resources which is of particular relevance in the case of extreme events such as floods and 200 

droughts, which might increase in a changing climate. 
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 405 

Table 1: Summary of the precipitation datasets evaluated in this study 

Group Dataset 
Temporal 

coverage 

Spatial 

coverage 

Spatial 

resolution 
Data sources Reference 

       

Interpolated E-OBS 1950-2018 Europe 0.25° Gauge Haylock et al., 2008 

 GPCC V.2018 1901-2016 Global 1° Gauge Ziese et al., 2018 

       

Multi-source MSWEP V2 1979-NRT1 Global 0.1° 

Satellite + 

Gauge + 

Reanalysis 

Beck et al., 2019 

       

 ERA-Interim 1979-2019 Global 0.5° Reanalysis Dee et al., 2011 

Modelled ERA5 1950-NRT2 Global ~0.28° Reanalysis 
Copernicus Climate 

change Service, 2017 

 CFSR 1979-NRT1 Global 0.5° Reanalysis Saha et al., 2010, 2012 

       

       
1 Near Real-Time product available until the present with a delay of several hours. 

2 Available until the present with a delay of several months. 
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  410 

Figure 1: Map of the study area. Signs mark the position of the 426 study catchments, with color indicating their annual average 

temperature. Map colors show the aridity index of regions as determined by a ratio of long-term average net radiation and 

precipitation (1984-2007). 
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 415 

 

Figure 2: Overview of the modelling approach. The SWBM model is forced with consistent net radiation and temperature data, but 

six different precipitation datasets. The obtained runoff and evapotranspiration are assessed in terms of the variability between the 

simulations. The performance of the runoff simulations is determined against streamflow observations.  
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Figure 3: Propagation of precipitation uncertainty into the runoff and ET simulations. Standard deviations are computed across 

the precipitation estimates and resulting runoff and evapotranspiration values. This is done at every grid cell and every month 

between May and September. Red lines indicate linear regression lines. Note that a log-log scale is used. 

 425 

https://doi.org/10.5194/hess-2019-660
Preprint. Discussion started: 6 January 2020
c© Author(s) 2020. CC BY 4.0 License.



17 

 

  

Figure 4: Climate-dependent propagation of precipitation uncertainty into runoff and ET. a) standard deviation across precipitation 

products, b) and c) relative standard deviation of resulting runoff and ET simulations with respect to that of precipitation, 

respectively.  
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Figure 5: Number of catchments where each precipitation product yields the best agreement with runoff observations (May-

September). Multiple data products can be best-performing at a catchment since they are ranked based on a merged score by 

combining anomaly correlation and absolute error. 
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Figure 6: Runoff-based performance of precipitation products across climate regimes. Colors refer to the percentage of catchments 

within each box recognized as the best performance based on anomaly correlation and absolute bias during May-September. 
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