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Abstract. Tracer-aided hydrological models are becoming increasingly popular tools as they have documented utility in 

constraining model parameter space during calibration, reducing model uncertainty, and assisting with selection of 

appropriate model structures. However, the issue of data availability, particularly input data, proves to be a major challenge 

associated with this type of application. Tracer-aided hydrological modelling typically requires a time series of isotopes in 10 

precipitation (δ
18

Oppt) to drive model simulations, but unfortunately, throughout much of the world, and particularly in 

sparsely populated high-latitude regions, these data are not widely available. This study uses the isoWATFLOOD tracer-

aided hydrological model to investigate the usefulness of three types of estimated δ
18

Oppt for model input, and the impact that 

these data have on model simulations and parameterization in the remote Fort Simpson Basin, NWT, Canada. This study 

showed that although total simulated streamflow was not significantly impacted by choice of δ
18

Oppt input, isotopes in 15 

streamflow (δ
18

OSF) simulations and the internal apportionment of water (and therefore, model parameterizations) were 

impacted, particularly during large precipitation and snowmelt events. This finding highlighted the importance of estimated 

δ
18

Oppt to capture both the variability and seasonality in precipitation isotopes as critical for tracer-aided hydrological 

modelling, especially when precipitation events displayed distinctly different isotopic compositions than that of streamflow. 

This study achieves an understanding of how isoWATFLOOD can be used in regions with a limited number of δ
18

Oppt 20 

observations, and that the model can be of value in such regions. This study reinforces that a tracer-aided modelling 

approach assists with resolving hydrograph component contributions, and works towards diagnosing the issue of model 

equifinality. 

1 Introduction 

Hydrological models are critical tools for the planning, development, design, operation and sustainable management of water 25 

resources (Singh and Frevert, 2006). These models provide insight into applications such as the prediction of floods, 

droughts and water availability, and the effects of climate and land use change on water resources. Problems arise in 

calibrating and validating hydrological model predictions, primarily due to: (1) a lack of available data at sufficient 

resolutions to force and validate model simulations - especially in remote, high-latitude locations (in Canada: Coulibaly et 

al., 2013); (2) model parameterization and issues with equifinality; and (3) the associated uncertainty in model results 30 

(Beven and Binley, 1992; Kirchner, 2006; Fenicia et al., 2008; Dunn et al., 2008). 
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It is now widely accepted that calibration and validation of hydrological models based solely on streamflow is not a 

sufficient evaluation measure (Kuczera, 1983; Beven and Binley, 1992; Kuczera and Mroczkowski, 1998; Seibert and 

McDonnell, 2002; Kirchner, 2006; Fenicia et al., 2008; Dunn et al., 2008).  Modellers are focusing on a model’s ability to 

correctly partition, store and release water from hydrologic compartments, in addition to adequately simulating total 5 

streamflow response. Conservative tracer data provides insights into the dominant hydrological processes and integrated 

runoff response (in northern catchments: Birks and Gibson, 2009; Tezlaff et al., 2015), and such data assist with constraining 

model parameter space during calibration, reducing model uncertainty, and assisting with selection of appropriate model 

structures (e.g., Tetzlaff et al., 2008; Birkel et al., 2010a; McMillian et al., 2012; Birkel et al., 2014; Smith et al., 2016). An 

increasing number of studies have investigated the utility of tracer-aided modelling approaches, especially over the past 10 

decade (for a comprehensive overview, see Birkel and Soulsby, 2015).  

 

Although greatly informative, previous tracer-aided modelling studies have generally been conducted using lumped 

conceptual rainfall-runoff models in highly instrumented small-scale experimental catchments (<10
2
 km

2
). This has resulted 

in distributed studies at the regional-scale (>10
3
 km

2
) left largely unexplored, with the exception of a few, select applications 15 

(Stadnyk et al., 2013). Modelling at the regional-scale typically requires a distributed approach to capture the heterogeneity 

in meteorological inputs, basin characteristics, and runoff response, resulting in more complex, highly parameterized models 

(e.g., Michaud and Sorooshian, 1994; Carpenter and Georgakakos, 2006; Her and Chaubey, 2015). Because it is at these 

larger scales where models are applied operationally and management decisions are based, there is a critical need to 

understand the abilities, limitations, and uncertainties associated with distributed tracer-aided modelling at the regional scale.  20 

 

Although there is an identified need, the issue of data availability, particularly input data, proves to be a major challenge 

associated with this type of application (Birkel and Soulsby, 2015). Tracer-aided hydrological modelling typically requires a 

time series of isotopes in precipitation (δ
18

Oppt) to drive model simulations. Unfortunately, throughout much of the world, 

and particularly in sparsely populated high-latitude regions (such as the vast majority of Canada), these data are not widely 25 

available. Although automatic samplers are becoming increasingly common, watersheds in which snow accumulation is 

substantial will continue to be fraught with difficulties surrounding the collection and characterization of precipitation 

isotopes, particularly during the winter months (Dietermann and Weiler, 2013; Penna et al., 2014). The lack of spatial and 

temporal density of δ
18

Oppt observations highlights the need for alternative methods to provide estimates of stable isotopes in 

precipitation for tracer-aided model forcing. Options include empirically-based models generating gridded time series 30 

estimates of precipitation isotopes (e.g., Lykoudis et al., 2010; Delavau et al., 2015), in addition to isotope-enabled climate 

model output (for a comprehensive overview, see: Noone and Sturm, 2010; Xi et al., 2014).  
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Small-scale catchment studies rely on continuous records of δ
18

Oppt observations at high temporal frequencies (typically 

daily, and less commonly, weekly) for model input. At the larger scale, tracer-aided modelling completed by Stadnyk et al. 

(2013) in the remote Fort Simpson region of northern Canada used annual average compositions of rainfall and snowfall 

δ
18

O to drive model simulations. Their results suggested that utilizing annual, spatially static oxygen-18 in precipitation 

forcing has the potential to significantly impact simulations and consequently, model parameterization as well. The 5 

assumption that model forcing is spatially invariant is not preferable, as δ
18

Oppt can vary drastically over small space and 

time scales due to changes in moisture sources and transport processes, rainout history and seasonality (e.g., in Canada: Gat 

et al., 1994; Moran et al., 2007; Birks and Edwards, 2009). 

 

Utilizing estimates of δ
18

Oppt to drive tracer-aided model simulations has not yet been investigated, particularly at the 10 

regional-scale where the lack of observed data have identified a need for estimates of δ
18

Oppt. Therefore, this study aims to 

explore how estimated δ
18

Oppt inputs of differing spatial and temporal variability impact regional tracer-aided modelling 

within two remote Canadian basins, where limited δ
18

Oppt observations exist. Our specific research objectives are to:  

a) force a regional tracer-aided hydrological model (isoWATFLOOD) with three types of estimated δ
18

Oppt 

input of varying temporal and spatial resolution;  15 

b) examine how choice of δ
18

Oppt input affects the simulation of total streamflow and isotopes in streamflow 

(δ
18

OSF), while accounting for parameter uncertainty, and; 

c) explore if choice of δ
18

Oppt input affects the internal apportionment of water, namely the seasonality of 

hydrograph components. 

2 Study area and data 20 

2.1 The Fort Simpson Basin 

The Fort Simpson Basin (FSB) is located within the Lower Liard River valley close to the town of Fort Simpson, Northwest 

Territories, Canada (61°45 N; 121°14 W; Fig. 1). This region has been the focus of several tracer-aided hydrological studies 

(e.g., St Amour et al., 2005; Stadnyk et al., 2005; 2013; Stadnyk-Falcone, 2008). The FSB is selected for this study to build 

upon previous modelling work conducted within the region, and follow up on recommendations from Stadnyk et al. (2013) 25 

suggesting further analysis and improvement of isoWATFLOOD δ
18

Oppt input. The study period of 1997–1999 is selected 

based data availability.    

 

This study considers two sub-basins of the greater Fort Simpson basin: the Jean-Marie and Blackstone River sub-basins (Fig. 

1). Differences in wetland distribution and function, basin physiography and land cover make-up between the two 30 

watersheds (Table 1) are the primary reasons in selecting these sub-basins for this study. These marked differences ensure 
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that watersheds of varying dominant hydrological processes are represented in the modelling, and therefore the impacts of 

δ
18

Oppt input selection on these processes can be examined.  

 

The land cover classification breakdown (Table 1) shows the primary land cover type within the sub-basins as transitional, 

consisting of shrubs, deciduous varieties and early generation spruce. The region has a high proportion of wetlands, with the 5 

total wetland percentage in Table 1 representing both bogs (disconnected drainage) and fens (connected drainage); although 

the amount of each type within each respective sub-basin varies. Aylsworth and Kettles (2000) state that Jean-Marie is 

predominately fen peatlands, while Blackstone is bog-dominated peatlands, with very few or no fen peatlands present.  

 

The Ecoregions Working Group (1989) classifies the FSB as a sub-humid mid- to high-boreal ecoclimatic region (Hbs), 10 

classified by cool summers approximately five months in length, with moderate (300-500 mm) annual precipitation. Winters 

are very cold with persistent snow cover. The hydrological response is dominated by snowmelt during late April to early 

May, while summer and fall runoff events are due to major rainfall, with a return to baseflow occurring during dry summer 

periods or towards the beginning of the ice-on season in October.  

2.2 Meteorological and hydrometric data 15 

Daily total precipitation, mean daily temperature, and hourly relative humidity data are obtained from Environment Canada’s 

Fort Simpson Airport weather station. Observed precipitation is supplemented with ANUSPLIN-derived daily precipitation 

extracted at eight locations throughout the Fort Simpson region (Fig. 1). ANUSPLIN is a multidimensional non-parametric 

surface fitting method that has been found well suited to the interpolation of various climate variables, particularity in data-

sparse, high-elevation regions as the method accounts for spatially varying dependencies on elevation (McKenney et al., 20 

2011). An inverse-distance weighting approach is used spatially distribute the daily ANUSPLIN and observed precipitation 

time series across the model domain (Kouwen, 2014). Rainfall that occurred over the study period, particularly in 1997, was 

significantly higher than normal. Additionally, 1998 was above average in temperature, which is especially prevalent in the 

first portion of the year. Other researchers have attributed the increased rainfall and warmer temperatures to a strong El Niño 

influence from mid-1997 to mid-1998 (Petrone et al., 2000; St Amour et al., 2005). 25 

 

Hydrometric records are obtained from Water Survey of Canada. Jean Marie was gauged at Highway No.1 in 1972 with a 

period of record of 44 years, whereas Blackstone was gauged at Highway No.7 in 1991 having a record length of 25 years. 

Neither sub-basin is regulated, therefore all flows are considered to be natural. During the study period, mean annual 

discharge was above normal in both sub-basins in 1997, normal in Jean Marie and slightly below normal in Blackstone in 30 

1998, and below normal in both sub-basins in 1999. A statistical summary of observations used in this study is provided in 

Table 4.  
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2.3 Isotope data 

During 1997 to 1999, intensive sampling took place in the Fort Simpson Basin as part of the Mackenzie Study of the Global 

Energy and Water Experiment (GEWEX; Stewart et al., 1998). The campaign sampled δ
18

O and δ
2
H of streamflow, rainfall, 

snowpack, and surface waters (wetlands and lakes) during the open water season (May to October). During ice-on 

conditions, the isotope stratigraphy of river ice extracted during late March in 1998 and 1999 was used to reconstruct the 5 

isotopic composition of winter streamflow (Gibson and Prowse, 1999; Prowse et al., 2002; St Amour et al., 2005). This 

study uses measured δ
18

O compositions in streamflow (δ
18

OSF) in the Jean-Marie (n = 71) and Blackstone (n = 69) sub-

basins for model calibration. Although δ
18

Oppt compositions (n = 27) were collected as part of the GEWEX sampling 

campaign, their spatial and temporal resolutions are not adequate for model forcing. These data are incorporated into the 

study as a means to validate simulated δ
18

Oppt forcing input, when available. The number of measurements and their 10 

statistical properties are summarized in Table 4. Isotopic compositions of δ
18

O are expressed in delta (δ) notation as a 

deviation from VSMOW (Vienna Mean Standard Mean Ocean Water) in units of per mille (‰), such that such that δwater = 

(Rwater/RVSMOW – 1) x 1000 ‰, where R is 
18

O/
16

O in the sample and standard, respectively. Isotope samples were analyzed at 

the Environmental Isotope Laboratory at the University of Waterloo, and St Amour et al. (2005) indicated maximum 

analytical uncertainties of  0.1 ‰ for δ
18

O. 15 

2.4 Precipitation oxygen-18 input 

The default method for δ
18

Oppt input in isoWATFLOOD is annual average compositions of rainfall and snowfall δ
18

O for 

each year of the simulation. Values for the FSB are obtained through averaged measurements of δ
18

O in rainfall and 

snowpack from the GEWEX study (Table 2; Table 4). δ
18

Oppt compositions are assumed constant throughout the watershed 

domain. Due to the averaged values and lack of spatial variability, this input type is referred to as static throughout the 20 

remainder of the manuscript.  

 

Times series simulations obtained from the KPN43 model created by Delavau et al. (2015) are used as a secondary δ
18

Oppt 

input. The KP43 model uses North American Regional Reanalysis (NARR; Mesinger et al., 2006) climate variables, 

teleconnection indices, and geographic information to produce gridded time series of oxygen-18 in precipitation at a monthly 25 

time step. This input is generated at a 10 km resolution (to mirror model set-up), and varies spatially throughout the study 

area due to the variation in the climatic predictors and geographic information required to produce simulations. 

 

The third δ
18

Oppt input assessed in this study is regional climate model output from the isotope-enabled climate model, 

REMOiso (Sturm et al., 2005; Sturm et al., 2007). Raw REMOiso δ
18

Oppt output is available at a 55 km spatial resolution and 30 

a 6h time step. However, REMOiso output is averaged to a daily time step, as the range and variability of sub-daily δ
18

Oppt 
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are erroneously large, and the resolution of streamflow oxygen-18 calibration data do not warrant a temporal frequency of 

input finer than daily. 

2.4.1 REMOiso bias correction 

Due to a lack of published studies evaluating REMOiso performance within Canada, a comparison between REMOiso 

output and Canadian Network for Isotopes in Precipitation observations (CNIP; Birks and Gibson, 2009) is completed to 5 

determine if REMOiso simulations require a regional bias correction. CNIP data are now part of the Global Network for 

Isotopes in Precipitation (GNIP) database and can be accessed at: http://www.iaea.org/water (IAEA, 2014). This analysis is 

completed at Snare Rapids, NWT, the closest CNIP station to the FSB, for the years of 2000 and 2001. Snare Rapids is 

located approximately 330 km northeast of Fort Simpson and has monthly δ
18

Oppt observations spanning the years of 1997–

2010. A longer time frame of comparison between CNIP and REMOiso is not possible due to the short overlapping period of 10 

REMOiso simulations and CNIP observations. Daily REMOiso simulations are averaged to monthly compositions for direct 

comparison to CNIP data using the precipitation amount-weighting approach in Eq. (1): 

 

δ                    δ
                       (1) 

 15 

where Pi is the amount of daily precipitation (mm) obtained from the Snare Rapids Canadian Air and Precipitation 

Monitoring Network (CAPMoN) station operated by Environment Canada, where isotopic compositions are also sampled.  

 

Uncorrected REMOiso simulations exhibit a positive bias in this region (Fig. 2), which is expected based on the ECHAM4 

mean annual δ
18

Oppt output (Noone and Sturm, 2010) and personal communications with S. J. Birks and K. Sturm (2016). 20 

Therefore, a seasonal bias correction is applied to daily REMOiso simulations. The bias correction is calculated as the 

average seasonal difference between the monthly amount-weighted REMOiso output and the CNIP observations (Table 3). 

Corrected monthly and daily REMOiso output at Snare Rapids are displayed on Fig. 2 as the dashed red and solid orange 

lines, respectively. For the current study, daily REMOiso output for the Fort Simpson region is bias corrected with the 

seasonal values in Table 3. The statistical properties of the corrected daily REMOiso simulations, alongside the KPN43 25 

monthly simulations and the static seasonal averages are summarized in Table 4. 

3 Methods 

3.1 Background and set-up 

The tracer-aided hydrological model used in this study is isoWATFLOOD (Stadnyk-Falcone, 2008; Stadnyk et al., 2013). 

isoWATFLOOD is an extension of the WATFLOOD hydrological model, whereby water and oxygen-18 are simultaneously 30 

budgeted throughout the modelled hydrologic cycle. WATFLOOD is a distributed model that uses grouped response units 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-539, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 25 October 2016
c© Author(s) 2016. CC-BY 3.0 License.



7 

 

(GRUs) to simulate streamflow in hydrologically-distinct land cover units (Kouwen et al., 1993; Kouwen, 2014). Process 

representation within WATFLOOD is considered to be a combination of both conceptual and physical, as certain algorithms 

are conceptually-based (e.g., evaporation and snowmelt), while others are more based in physics (e.g., channel routing). Due 

to the coupling of isotopes to each hydrological processes simulated in WATFLOOD, simulation of isotopic composition 

does not introduce any additional parameters. A more comprehensive description of isoWATFLOOD’s model structure and 5 

governing equations can be found in Stadnyk et al. (2013) and select descriptions are provided in Table 6.  

 

isoWATFLOOD requires δ
18

O of rainfall and snowfall and hourly distributed relative humidity to force the model. 

Additionally, δ
18

O compositions for hydrologic storages of river/fen water, soil water, baseflow, and snowpack are needed 

for model initialization, which can be obtained from field data or estimated.  Here, regional isotopic initializations are 10 

derived from measured data (St Amour et al., 2005), and are summarized in Table 5. Sensitivity analyses have shown that 

within one month of simulation isoWATFLOOD spin-up is complete and, past this point, initialization values have no 

bearing on model output. All other data required by isoWATFLOOD (e.g., distributed precipitation, temperature, 

evaporation, inflows, etc.) are passed from WATFLOOD forcings or computations. 

 15 

The watershed model set-up in this study is based off the version used by Stadnyk et al. (2013), with several changes and 

improvements. Based on findings from Aylsworth and Kettles (2000), we implemented a 90 % bog and 10 % fen split in 

Blackstone and a 30 % bog and 70 % fen split in Jean-Marie. The entirety of the FSB is modelled at a 10 km spatial 

resolution, and the model is run continuously from January 1996 to December 1999; whereby 1996 is utilized as spin-up to 

set initial hydrologic and isotopic storage conditions.  20 

3.2 Calibration and parameter uncertainty 

Being a distributed model, WATFLOOD has a large number of parameters requiring calibration. For this reason, a 

sensitivity analysis is first conducted to identify which parameters have the largest influence on both streamflow and δ
18

OSF. 

A subset of parameters are identified for inclusion in the calibration based on this sensitivity analysis, including nine 

hydrological parameters from each of the five most prominent land classes (mixed/deciduous, coniferous, transit, bogs and 25 

fens), and four routing parameters from each of the two modelled sub-basins. This results in 53 parameters that are 

incorporated in the parameter uncertainty assessment (Table 6; Table 8). Allowable ranges for each parameter are 

determined based on published values alongside personal communications with N. Kouwen (Kouwen, 2014) (Table 8). 

 

This study uses a multi-criteria, multi-objective approach to model calibration, with the procedure summarized as follows: 30 

i. A Monte Carlo random sampling approach, assuming uniform parameter distributions, is used to 

individually select each parameter from its allowable range (Table 8). Random parameter sampling is 

completed 30,000 times, generating 30,000 unique parameter sets for isoWATFLOOD model evaluation.  
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ii. For each of the three δ
18

Oppt inputs (KPN43, REMOiso and static), streamflow and δ
18

OSF are simulated 

from 1996 to 1999 for all 30,000 parameter sets (as defined in (i)). 

iii. Modelled streamflow and δ
18

OSF are assessed statistically over the period of study (1997–1999, excluding 

the 1996 spin-up year), and regionally across the Jean Marie and Blackstone sub-basins. Simulations are 

classified as behavioural or non-behavioural based on the following set of efficiency criteria thresholds for 5 

streamflow and δ
18

OSF:  

a. Streamflow:  

NSE ≥ 0.5;  

|%Dv| ≤ 20 %, and; 

|log(%Dv)| ≤ 20 %. 10 

b. δ
18

OSF: 

RMSE ≤ 2.5 ‰, and; 

KGE >= 0.3. 

iv. All reported results, such as simulation means, percentiles and parameter values, are derived from 

behavioural simulations corresponding to each δ
18

Oppt input. The presented uncertainty bounds are the 5
th
 15 

and 95
th

 percentiles of simulated streamflow, δ
18

OSF, and snowpack δ
18

O, drawn from the behavioural 

simulations at each time step for each δ
18

Oppt input.   

 

The behavioural thresholds used in this study are subjectively defined, however, are arrived at through a review of methods 

employed in similar studies (e.g., Moriasi et al., 2007; Birkel et al., 2010a; 2010b; 2011; Smith et al., 2016), measurement 20 

error, and an iterative process exploring the sensitivity between the set thresholds and resulting behavioural simulations for 

each input type. Based on this analysis, the Nash-Sutcliffe efficiency (NSE; Nash and Sutcliffe, 1970), volumetric error 

criteria (%Dv), root mean square error (RMSE), and the Kling-Gupta efficiency criterion (KGE; Gupta et al., 2009; Kling et 

al., 2012) are selected. A multi-criteria model evaluation approach is used as each criterion places emphasis on different 

statistical properties of a simulation. For example, NSE has a documented bias towards peak flow, and conversely, log 25 

(%Dv) is more appropriate evaluation measure for periods of low flow. The NSE, %Dv, and log(%Dv) efficiency are not 

considered suitable metrics for δ
18

OSF assessment due to the temporal discontinuity of the isotope observations, therefore 

RMSE and KGE are used as isotopic simulation statistics. It should also be noted that δ
18

OSF observations are not equally 

distributed through time, whereby the highest concentration of observations occurs during snowmelt in the month of May 

(~25 %), and the fewest observations during the six month ice-on period from November to April (~23 %). The sporadic 30 

distribution of observations may result in the calibrations more highly weighted to certain periods of the year and the 

dominate processes occurring at that time; therefore having the potential to impact model parameterization.  
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4 Results and discussion 

Results of the three calibrations indicate that δ
18

Oppt input influences the number simulations that meet the behavioural 

criteria thresholds. The KPN43 input results in an increased number of behavioural simulations (n = 321) in comparison to 

the REMOiso (n = 268) or static (n = 216) input types (Table 7). This suggests that the choice of δ
18

Oppt input may 

potentially impact internal apportionment of water (i.e., the modelled proportion of water entering, stored, and released from 5 

the ground surface, upper and lower zones) through model parameterization. A summary of behavioural parameter set 

characteristics is provided in Table 8. Land cover parameters are reported as weighted averages for the modelled region. 

 

Among input types there are potentially significant differences in several parameters, which will be explored further 

throughout the remainder of the manuscript. In almost all instances, the range of the parameters was not significantly 10 

constrained from the allowable parameter range. Due to the wide range of behavioural parameter values (Table 8), we are 

confident that the approach used is sufficient to characterize parameter uncertainty. However, and not unexpectedly, this 

finding also indicates that 30,000 model evaluations are not sufficient to quantify parameter identifiability for 

isoWATFLOOD. 

4.1 Precipitation oxygen-18 input 15 

Time series of δ
18

Oppt inputs for Jean Marie and Blackstone are displayed on panel (a) of Fig. 3 and Fig. 4, respectively. On 

average, KPN43 input is the most enriched (-20.48 ‰), followed by REMOiso (-21.78 ‰), with static being the most 

depleted (-22.82 ‰). KPN43 and static inputs have similar variation about their mean values, with CV’s equal to 0.19 and 

0.20, respectively. Conversely, REMOiso has a higher CV (0.25) and much larger range, which is, in part, due to the finer 

daily time step of this input. Spatial variability between Jean Marie and Blackstone sub-basins is zero for the static input; 20 

however some variation among sub-basins is seen for KPN43 and REMOiso. Interestingly, both the KPN43 and REMOiso 

inputs show, on average, more depleted δ
18

Oppt values within Blackstone (-20.79 ‰ and -22.01 ‰, respectively) in 

comparison to Jean Marie (-20.17 ‰ and -21.54 ‰, respectively), in addition to increased variability. This is likely caused 

by the higher elevations present in the headwaters of the Blackstone relative to the Jean Marie (a maximum difference of 

~215 m). 25 

 

Although there are only 19 rainfall δ
18

O observations collected over the study period for Jean Marie, and eight within 

Blackstone (hollow black diamonds on Fig. 3 and Fig. 4), these limited data provide some information regarding accuracy of 

the estimated δ
18

Oppt inputs. By visual inspection, each of the three inputs produces reasonable estimates of δ
18

Oppt. This is 

expected for the static input as the seasonal compositions are derived from observations; however, this comparison provides 30 

some level of validation for KPN43 and REMOiso. REMOiso is the only input that can somewhat replicate the event-scale 

variability in δ
18

Oppt due to its daily time step. Both KPN43 and static inputs appear to generally capture the average 
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magnitude of summer rainfall events and overall seasonal variability; however there are insufficient observations to 

statistically support this statement within the Fort Simpson basin. 

4.2 Modelling streamflow 

All calibrations adequately capture variations in total streamflow in both sub-basins, as emphasised by the regional 

calibration statistics (Table 7).  On average, behavioural streamflow simulations have a NSE of 0.68, and %Dv of 13.8 %. 5 

Mean daily streamflow and uncertainty bounds for the KPN43, REMOiso and static model calibrations are displayed on 

panel (b) of Fig. 3 and Fig. 4. Differences in hydrograph characteristics between Jean Marie and Blackstone are due to 

variations in basin physiography, storage mechanisms and land cover composition, specifically large differences in average 

basin slope and wetland dynamics (St Amour et al., 2005).  

 10 

Within the Jean Marie sub-basin, both the timing and volume of peak flows derived from snow melt and early summer rains 

are well captured in 1998, however, volume is under predicted in 1997 and 1999 for the average streamflow simulation. The 

model also has difficultly capturing the volume of the recession limb, which may be attributed to the parameterization of 

baseflow and fen response in this sub-basin. In the Blackstone, the recession limb of the hydrograph and low flow volume 

are well modelled, however peak flows (with the exception of the 1997 snow melt) are under estimated. Within both sub-15 

basins, flows from 1997 fall rain events are well captured, except for an October 1998 rainfall event that generated a limited 

streamflow response in both sub-basins. This may point to inadequate precipitation forcing due to the climate station 

proximity and high spatial variability of rainfall, or possibly inadequate soil moisture parameterization. 

 

An interesting finding is the similarity of mean streamflow simulation despite contrasting δ
18

Oppt inputs. Kendall’s tau 20 

coefficient (τ) is used to determine the level of correlation between streamflow simulations generated by the three δ
18

Oppt 

input methods (and associated model parameterizations). In Jean Marie, τ ranges between 0.92 (REMOiso versus static) to 

0.97 (KPN43 versus static). In Blackstone τ is more tightly constrained, ranging from 0.96 (REMOiso versus static) to 0.98 

(KPN43 versus static). All τ values are statistically significant. It should be noted that small deviations between mean 

streamflow simulations occur during spring melt, where REMOiso driven streamflow consistently shows higher peaks than 25 

KPN43 and static driven simulations. However, these differences in mean streamflow fall within overlapping uncertainty 

bounds and therefore are not deemed significant outside of parameter uncertainty.  

4.3 Modelling δ
18

O 

Mean daily δ
18

OSF simulations and uncertainty bounds for KPN43, REMOiso and static model calibrations are displayed on 

panel (c) of Fig. 3 and Fig. 4. Each calibration produces mean simulations that capture many of the trends (but not 30 

particularly the magnitudes) present in the observed δ
18

OSF record. Observed δ
18

OSF show depletion in streamflow δ
18

O due 

to large influxes of snowmelt during the spring freshets, with δ
18

OSF gradually enriching over the summer months due to the 
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influence of evaporative enrichment of surface and soil waters, occasionally punctuated by rainfall events that may enrich or 

deplete δ
18

OSF. During late fall and throughout the winter, δ
18

OSF tends toward a more depleted, stable groundwater 

composition (St Amour et al., 2005).   

 

Though each of the calibrations demonstrate many of the same trends as the observed δ
18

OSF record, there are notable 5 

differences. As simulated δ
18

OSF uncertainly envelopes associated with each input type are, at times, non-overlapping, 

differences in δ
18

OSF simulations can be attributed to δ
18

Oppt input and therefore are not just an artefact of parameter 

uncertainty. The dissimilarities between δ
18

OSF simulations are also reflected in the RMSE statistic (Table 7). The RMSE is 

larger for static-derived δ
18

OSF simulations due to increased emphasis on periods with observed data (i.e., spring freshet), 

where larger offsets between simulated and observed δ
18

OSF exist. The KGE statistic does not mirror RMSE, as it shows only 10 

minor differences between δ
18

OSF simulations. The nature of the KGE statistic is to put less emphasis on error offsets derived 

from peak flows (i.e., spring freshet) by providing a more balanced approach where error is summed first and squared at the 

end, preserving the sign of the error and enabling a trade-off of error throughout the simulation (Gupta et al., 2009). 

Therefore, this statistic better reflects the fit of the overall simulation throughout the study period, however, further research 

is required to better understand the impacts of sporadic sampling resolution (of δ
18

OSF observations) on efficiency criteria, 15 

and consequently the objective functions(s).  

 

Differences in δ
18

OSF simulations within each sub-basin are due to a combination of: (1) the markedly different δ
18

Oppt 

compositions between inputs entering the system during large precipitation events, and (2) the way in which new water 

flushes through the system via the various hydrological compartments. For this study area, large precipitation events can be 20 

further separated into: (1) major rainfall events occurring in post-freshet (summer and fall) months, and (2) the accumulation 

of winter snowfall and corresponding spring freshet 

 

Post-freshet δ
18

OSF simulations are impacted by rainfall amount and composition, as well as the offset between simulated 

δ
18

OSF and δ
18

Oppt input at the time of rainfall. As rainfall amount and/or the offset increases, the resulting impact on 25 

simulated δ
18

OSF also increases. This highlights the importance of capturing the variability in the δ
18

Oppt input, particularly 

for large and isotopically distinct (from streamflow) rainfall events. The threshold defining a large rainfall event will vary 

depending on factors such as basin physiography, land cover, storage capacity and antecedent conditions. St Amour et al. 

(2005) estimate this threshold to be ≥40 mm within the Fort Simpson region. An example of a large, yet isotopically distinct, 

rainfall event is June 11–12, 1998 when approximately 70 mm fell over two days with an observed δ
18

Oppt composition of -30 

22.7 ‰.  Both REMOiso and static inputs reasonably captured the event (-20.9 ‰ and -20.1 ‰, respectively), however, the 

KPN43 input predicted a composition of -17.6 ‰. This single event resulted in a significant offset between KPN43 δ
18

OSF 

compared with REMOiso and static δ
18

OSF which was maintained throughout the remainder of 1998, until the 1999 freshet.  
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Throughout much of Canada and other regions experiencing a high-latitude climate, a substantial portion of annual 

streamflow (and typically the peak flow) is generated during the spring freshet when the accumulation of solid precipitation 

from the winter season melts over the period of a few weeks. Therefore, it is important to understand how differences in 

δ
18

Oppt input impact snowpack and snowmelt isotopic compositions in isoWATFLOOD. Figure 5 shows the evolution of 

precipitation-weighted snowpack oxygen-18 (δ
18

OSNW) throughout each winter season of the study period. 5 

 

Comparison of like-forcing pairs between Jean Marie and Blackstone reveals subtle spatial differences in simulated δ
18

OSNW. 

There are, however, significant differences between KPN43, REMOiso and static snowpack compositions within each sub-

basin. Interestingly, REMOiso and KPN43 simulations of snowpack show similar end of winter precipitation-weighted 

δ
18

OSNW, differing by less than 0.5 ‰ in 1997–1998 and 1998–1999. REMOiso and KPN43 inputs also consistently generate 10 

significantly more enriched snowpack compositions throughout the study period in comparison to static δ
18

OSNW input. On 

average, KPN43 is 3.3 ‰ more enriched, and REMOiso is 3.1‰ more enriched than end of season static δ
18

OSNW. These 

differences may also stem from insufficiencies in modelled snowpack due to fractionation during sublimation, melting and 

refreezing of the snowpack that is unaccounted for in the current isoWATFLOOD model. The static input may inadvertently 

account for some of these processes, as the specified compositions are from snow pack sampling conducted towards the end 15 

of winter (in late March). Research into defining snow fall, pack and melt offsets (from field studies), and refining 

isoWATFLOOD’s cryospheric dynamics and processes is currently ongoing. 

 

These significant differences in simulated snowpack composition are one of the primary causes for the offsets between 

KPN43, REMOiso and static δ
18

OSF simulations (Fig. 3 and Fig. 4). Once a δ
18

OSF simulation has been offset, it is not 20 

possible to ‘reset’ the isotopic composition in late fall when streamflow decreases to near-zero since there is still mass 

remaining in the system. This can result in compounding isotopic error over a continuous simulation period, thus 

highlighting the sensitivity of this tracer as a calibration tool. This compounding error is also observed for rainfall events, but 

generally to a lesser extent due to the relatively smaller durations and magnitudes (volume contributions) of most rainfall 

events in high latitude regions.   25 

 

Provided that both δ
18

OSF and δ
18

OSNW are significantly different among δ
18

Oppt inputs, internal water apportionment 

(determined by model parameterization) may also be influenced by δ
18

Oppt input type. Therefore, hydrograph component 

contributions are further explored to determine the effect that the differences in δ
18

Oppt input has on these contributions. 

4.4 Hydrograph component analysis and parameter distributions 30 

Percent of volume contributing to total streamflow from surface runoff, interflow and baseflow storage for each season (DJF: 

December-January-February; MAM: March-April-May; JJA: June-July-August; and, SON: September-October-November) 

and each of the three δ
18

Oppt inputs are shown on Fig. 6. Jean Marie and Blackstone sub-basins generally display similar 
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trends in internal water apportionment throughout the year, indicating generally similar model parameterizations. Some 

seasonal differences are visible, which can be linked to variations in basin physiography, land cover, and storage 

characteristics reflected by differences in the baseflow (lzf and pwr) and wetland parameters (kcond and theta) between 

basins (Table 8). Overall, the freshet and post-freshet percent volume contributions to total streamflow in this study are in 

general agreement with those reported in previous studies. For example, St Amour et al. (2005) also found groundwater 5 

contributions to be significant throughout the year, and estimated post-freshet contributions to total streamflow at 71 % (± 9 

%) and 64% (± 10 %) within Jean Marie and Blackstone, respectively. Snowmelt contributions were estimated to be 21 % (± 

2 %) and 40 % (± 4 %) of total streamflow volume for Jean Marie and Blackstone. Additionally, Jasechko et al. (2016) 

estimate that annually 80 – 90 % of the Mackenzie River streamflow is “old” water (i.e., water that has not entered the 

stream within the last 2.3 ± 0.8 months). Their findings also suggest that the annual percentage of old streamflow can be 10 

higher in mountainous watersheds with steeper slopes, such as the FSB, than lower-gradient watersheds. 

 

Comparison of seasonal volume contributions derived from each δ
18

Oppt input reveal that during spring (MAM), REMOiso-

driven simulations show significantly more surface flow contribution to total streamflow, with the mean volume lying above 

the 95
th

 percentile for both the KPN43 and static input simulations (Fig. 6). On average, REMOiso simulations contribute 15 

almost twice as much surface runoff to total streamflow as KPN43 and static simulations during MAM (39 % versus 25 % 

and 22 %, respectively, for Jean Marie; and similar, yet slightly larger, percent contributions for Blackstone).  

 

Based on the averaged seasonal analysis, no other significant differences in component contributions outside of parameter 

uncertainty can be attributed to δ
18

Oppt input. It is important to note, however, that each δ
18

Oppt input results in differing 20 

amounts of parameter uncertainty, both seasonally and overall, as represented by differing widths of uncertainty bounds 

(cross symbols) on Fig. 6. The variation in uncertainty bounds between δ
18

Oppt inputs is also visible on Fig. 3 through Fig. 5. 

The REMOiso input yields the largest amount of uncertainty in total streamflow, also reflected in the relatively larger 

amounts of uncertainty in surface water and baseflow component contributions (Fig. 6). Conversely, KPN43 and static 

inputs generate similar or slightly larger uncertainty in interflow (soil water) contributions relative to REMOiso and lower 25 

uncertainty surrounding surface and baseflow contributions, and overall total streamflow. These differences in uncertainty 

are attributed to the number, and characteristics of the behavioural parameters retained for each δ
18

Oppt input, which originate 

due to distinctions in magnitude and variability (both spatial and temporal) among δ
18

Oppt inputs. 

 

Further demonstrated by parameter probability distributions (Fig. 7), the three calibrations resulted in noteworthy differences 30 

in behavioural parameters. We do not display these distributions to comment definitively on parameter identifiability 

because, as previously noted, the number of evaluations was insufficient for that purpose. But rather, we introduce this 

analysis for select parameters to reinforce and explain the findings from Fig. 3 through Fig. 5, and to highlight that within 

this study, model parameterization is impacted by δ
18

Oppt input. The selected parameters influence evaporation (f-ratio), 
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surface runoff during snowmelt (akfs, base), upper and lower zone storage (retn), interflow (retn), and baseflow (lzf, pwr). 

Results show that more often than not, REMOiso parameter distributions are different than KPN43 or static parameter 

distributions. Although there are dissimilarities between KPN43 and static parameter distributions, however these are 

typically not as prevalent. This echoes the findings from Fig. 7 that KPN and static derived contributions to total streamflow 

are more similar than contributions arising from REMOiso; which may very well be an artefact of the increased temporal 5 

and spatial variability in the REMOiso δ
18

Oppt input relative to that of the KPN43 and static inputs.  

 

Differences in surface water contribution during snowmelt between REMOiso, KPN43 and static inputs are likely be 

explained by differences in the akfs and base parameters. Parameter distributions derived from REMOiso are significantly 

different (as verified through Kolmogorov–Smirnov testing of distributions) than those from the KPN43 and static inputs for 10 

these parameters (Fig. 7, panels (b) and (f)). Lower akfs values represent decreased infiltration and increased surface runoff 

during snowmelt, which corresponds to REMOiso’s increased surface water contributions to total streamflow during spring 

(MAM). Differences in baseflow contribution and uncertainty between δ
18

Oppt inputs are attributed, in part, to differences in 

the lzf and pwr parameters (Fig. 7, panels (c-d) and (g-h)), which have a large impact on the quantity of baseflow and the 

slope of the recession limb of the hydrograph. Wider uncertainty bounds for REMOiso relative to KPN43 and static within 15 

Blackstone (Fig. 6, panel (f)), and for all δ
18

Oppt inputs during fall and winter within Jean Marie (Fig. 6, panel (c)), are likely 

due to the wider range of behavioural values for the pwr parameter, specifically the inclusion of lower values which results 

in longer, more drawn out recession limbs.  

 

Although more work is required towards assessing and understanding parameter identifiability for WATFLOOD, the above 20 

analysis shows that selection of δ
18

Oppt input has direct implications on model parameterization, and this source of 

uncertainty should be considered in future studies.  

5 Conclusions and recommendations 

This study uses three types of estimated δ
18

Oppt input to force a tracer-aided hydrological model, isoWATFLOOD, and 

investigates the impact that δ
18

Oppt inputs of differing spatial and temporal variability have on total streamflow, isotopic 25 

composition of streamflow, and the seasonality of individual hydrograph components. This work informs the over-arching 

goal of quantifying and reducing uncertainty (and equifinality) in isoWATFLOOD streamflow simulations. 

 

This study demonstrated that although total simulated streamflow is not significantly affected by choice of δ
18

Oppt input, 

δ
18

OSF simulations and the internal apportionment of water (surface flow, interflow, and baseflow contributions) in 30 

WATFLOOD can be significantly impacted, especially during large precipitation and snowmelt events. The ability of 

estimated δ
18

Oppt to capture both the variability and seasonality in precipitation isotopes, especially when precipitation events 
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display distinctly different isotopic compositions than that of streamflow, is critical for tracer-aided model forcing. 

Differences in δ
18

OSF and water partitioning between compartments are driven by differences in model parameterization, as 

witnessed by variations in the amount of uncertainty and parameter distributions between δ
18

Oppt input types. This suggests 

that choice of δ
18

Oppt input impacts parameterization of WATFLOOD, and for this reason, if estimates of δ
18

Oppt are used in 

modelling, modellers should account for this input uncertainty in overall uncertainty assessments. Findings also show that 5 

simulations of total streamflow did not show significant differences between the three δ
18

Oppt inputs and corresponding 

parameterizations, despite δ
18

OSF simulations displaying significant differences. This reinforces to the utility of tracer-aided 

models to diagnose issues with equifinality in model simulations. 

 

As WATFLOOD is a complex model with a large amount of parameters, it is important to work towards conducting a 10 

comprehensive study focusing on δ
18

Oppt input uncertainty and parameter identifiability. Ideally, further studies should be 

conducted in a watershed that is adequately instrumented to characterize observed δ
18

Oppt input both spatially, but more 

importantly, temporally (i.e., daily or weekly sampling resolution). This will facilitate a ‘baseline’ model calibration (using 

observed δ
18

Oppt) from which deviations in parameter distributions due to estimated δ
18

Oppt input can be more intensely 

explored. This type of study would allow further investigation of several key questions: first, if these pseudo-forcings are 15 

adequate alternatives in place of δ
18

Oppt observations; second, if there is a specific subset of model parameters that are more 

sensitive to estimated δ
18

Oppt input, and how (if at all) these parameters compensate for compounding error stemming from 

estimated δ
18

Oppt input. Unfortunately, at least within Canada, a well instrumented watershed at the regional scale does not 

yet exist. This again points to the importance of implementing additional (or enhancing current) hydro-meteorological 

monitoring networks. If observation networks allow, this type of study should also be conducted in watersheds of differing 20 

dominant hydrological processes (e.g., rainfall-dominated versus snowmelt-dominated) to better understand δ
18

Oppt input 

uncertainty on parameterization across the range of modelled hydrologic processes. 

 

As expected, REMOiso exhibits some bias and will continue to need correction before application within Canadian 

watersheds. More studies are needed to examine the differences between δ
18

Oppt observations and REMOiso simulations 25 

throughout Canada to better understand the nature of this bias, and the most appropriate bias correction methods; which can 

be done using observations from the CNIP database. This feedback regarding REMOiso performance across Canada is also 

beneficial to model developers. Additionally, the suitability and performance of other isotope-enabled RCM’s for use in 

Canada should be explored. Regarding the usefulness of the inputs within regions of limited δ
18

Oppt observations, both the 

static and REMOiso inputs require existing δ
18

Oppt observations (i.e., from CNIP) to either define or bias correct the input, 30 

which may limit their use for certain applications. If these data are not available, the KPN43 input provides reasonable 

results without the need for any additional observations. For all inputs, the existence of CNIP (and other isotopes in 

precipitation networks) observations is crucial to the development, validation, and bias correction of estimated 
18

Oppt 

inputs. 
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Understanding how estimated δ
18

Oppt input affects model parameterization and subsequently internal distribution of water is 

important to understanding overall uncertainty of the model and the model’s abilities and limitations without access to 

observed δ
18

Oppt times series data. Canada, alongside many other countries, continues to have significant regions with sparse 

hydro-meteorological observations (Coulibaly et al., 2013). This study achieves an understanding of how isoWATFLOOD 5 

can be used in regions with a limited number of δ
18

Oppt observations, and that the model can be of value in such regions. This 

study reinforces that a tracer-aided modelling approach assists with resolving hydrograph component contributions, and 

works towards diagnosing the issue of model equifinality and knowledge that modellers are achieving the ‘right answers for 

the right reasons’ (Kirchner, 2006). Attaining this understanding of δ
18

Oppt input uncertainty on simulated model output is 

especially important when calibrated models are used as tools to assess how changes in climate or land-use effect future 10 

predictions of streamflow.  
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Figure 1: Fort Simpson River Basin (all other tributaries of the Liard and Mackenzie Rivers have been removed for ease of 

viewing). 

 

 5 

Figure 2: Comparison of raw and corrected REMOiso δ18Oppt output with CNIP monthly compositions at Snare Rapids, NWT. 
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Figure 3: Input and behavioural simulations for Jean Marie, including: (a) KPN43, REMOiso and static δ18Oppt input time series 

and daily precipitation; and simulated (b) mean daily streamflow and uncertainty bounds and (c) mean daily δ18OSF and 

uncertainty bounds, for KPN43, REMOiso and static driven model calibrations. δ18Oppt input-specific uncertainty bounds are 

represented as the shaded regions, with shading colour corresponding to δ18Oppt type.          5 
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Figure 4:  Input and behavioural simulations for Blackstone, including: (a) KPN43, REMOiso and static δ18Oppt input time series 

and daily precipitation; and simulated (b) mean daily streamflow and uncertainty bounds and (c) mean daily δ18OSF and 

uncertainty bounds, for KPN43, REMOiso and static driven model calibrations. δ18Oppt input-specific uncertainty bounds are 

represented as the shaded regions, with shading colour corresponding to δ18Oppt type. 5 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-539, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 25 October 2016
c© Author(s) 2016. CC-BY 3.0 License.



23 

 

 

Figure 5: Precipitation-weighted δ18O of snowpack (δ18OSNW) for KPN43, REMOiso and static inputs from January to the end of 

melt for each year of the study period. Snow water equivalent (SWE), snowfall (gray line) and rainfall (blue line) are also shown. 

δ18Oppt input-specific uncertainty bounds are represented as the shaded regions. 
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Figure 6: Percent seasonal volume contributing to total streamflow from surface runoff, interflow and baseflow storages for each 

season. Cross symbols represent the 5th and 95th percentiles for each forcing method, and circle symbols signify the mean values. 

The combined uncertainty bounds representing the 5th and 95th simulations from all three δ18Oppt input types are shaded in gray. 
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Figure 7: Probability distributions for select parameters, as indicated in the bottom right corner of each panel. Parameters are 

from behavioural simulations, and (a), (b), (e) and (f) have been weighted to the land cover distribution within Jean Marie and 

Blackstone, as outlined in Table 1. Panels (c) and (d) and river class parameters within Jean Marie, and panels (g) and (h) contain 

river class parameters for Blackstone. 5 
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Table 1: Basin characteristics, including land cover classification, area, and average basin slope (recreated from data provided in 

St Amour et al., 2005) 

Sub-basin Land Cover Classification (%) Area 

(km2) 

Basin 

Slope (%) Deciduous Mixed Coniferous Transitional Wetland Water 

Jean- Marie River 5 22 23 31 14 1.3 1310 0.3 

Blackstone River 7 17 14 39 21 0.7 1390 0.63 
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Table 2: Static δ18Oppt input compositions of annual rainfall and snowfall oxygen-18 for isoWATFLOOD. 

Year δ
18

O rainfall 

(‰) 

δ
18

O snowfall 

(‰) 

1996 -17.00 -29.35 

1997 -19.10 -29.35 

1998 -20.10 -25.03 

1999 -16.52 -26.79 
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Table 3: Seasonal REMOiso bias correction. 

Season Correction (‰) 

November – December – January – February -4.5 

March – April – May -8.9 

June – July – August -7.3 

Septemer – October -8.5 

Average Correction Applied: -7.0 
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Table 4: Data summary for the study period (SP) and period of record (PoR). The coefficient of variation (CV) is calculated as the 

ratio of the standard deviation to the mean. 

Variable (gauge ID) Unit 
Number of 

Measurements 

Mean   

(SP, PoR) 

CV 

(SP, PoR) 

SP Range 

(min, max) 

Hydrometric/Meteorological Data 

Daily Average Streamflow  

     Jean Marie (10FB005) 
m

3
/s 1095 4.66,  5.25 1.24,  2.06 0.19,  34.9 

Daily Average Streamflow  

     Blackstone (10ED007) 
m

3
/s 1095 8.96,  10.76 1.65,  2.17 0.04,  109 

Mean Daily Air Temperature   

     Fort Simpson (2202101) 
°C 1093 -1.5,  -3.02 N/A -40.8,  25.3 

Daily Precipitation  

     Fort Simpson (2202101) 
mm 1088 1.12,  1.01 3.04, 3.19 0.0,  43.0 

Hourly Relative Humidity*  

     Fort Simpson (2202101) 
% 26280 73.9 0.24 14, 100 

Isotopic Measurements* 

Streamflow δ
18

O - Jean Marie ‰ 71 -19.70 0.03 -21.34, -18.72 

Streamflow δ
18

O - Blackstone ‰ 69 -20.17 0.06 -24.01, -17.92 

Rainfall δ
18

O 

     Jean Marie and Blackstone 
‰ 27 -17.55 0.23 -26.70, -11.12 

Precipitation δ
18

O Forcing* 

KPN43  δ
18

Oppt input ‰ 
1800 (36 values at 

50 grid points) 
-20.48 0.19 -28.86, -13.91 

REMOiso δ
18

Oppt input ‰ 
54750 (1095 values 

at 50 grid points) 
-21.78 0.25 -42.82, -10.68 

Static δ
18

Oppt input ‰ 
300 (6 values at 50 

grid points) 
-22.82 0.20 -29.35, -16.52 

* Provided only for the study period, 1997 – 1999. 
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Table 5: Initialization values for FSB isoWATFLOOD simulations. 

Variable Description Value (‰) 

δ
18

Osf Background delta for river water initialization -13.52 

δ
18

OIF Background delta for soil water initialization -14.60 

δ
18

OGW Background delta for groundwater initialization -20.00 

δ
18

OSNW Background delta for snow initialization -22.00 
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Table 6: Parameters included in the Monte Carlo calibration, alongside a description of what the parameter represents and the 

algorithm it is used within. 

Name Description Algorithm 

Routing Parameters 

flz Lower zone drainage function 
An exponential ground water depletion function that gradually 

diminishes the base flow. Ground water is replenished by 

drainage of the UZS: 

QLZ = LZF *(LZS) 
PWR

 

Where: LZS is lower zone storage 

QLZ is the baseflow flux 

pwr 
Lower zone drainage function 

exponent 

theta Wetland porosity Physically-based wetland routing algorithm  

(McKillop et al., 1999) kcond Conductivity parameter 

Hydrologic Parameters 

f-ratio Interception capacity multiplier 

Conceptual evaporation algorithm based on Hargreaves and 

Samani (1982). f-ratio is a multiplier for the interception 

capacity for each land class. 

ak Surface permeability (bare ground) 
Conceptual infiltration algorithm (similar to Green and Ampt, 

1911); but based on Richard's equation which is physically-

based (Philip, 1954) akfs Surface permeability 

rec Interflow coefficient 
Interflow is represented by a simple storage-discharge 

relation: 

DUZ = REC * (UZS-RETN)*Si 

Where: UZS = upper zone storage 

DUZ = depth of upper zone storage released as interflow 

Si = internal land surface slope 

retn Upper zone retention [mm] 

ak2 Recharge coefficient (bare ground) 

Upper zone to lower zone drainage is represented by a simple 

storage-discharge relation: 

DRNG = AK2 * (UZS - RETN) 

Where: DRNG is the drainage from UZS to LZS 

mf Melt factor [mm/°C/hr] M = MF (Ta - base) 

Anderson (1976) base Base Temperature [°C] 

sub Sublimation factor 

Sublimation is modelled by a static sublimation factor. 

Amount of sublimation is a fraction of the observed snowfall. 

For new model setups, the sublimation factor has been 

replaced by a static sublimation rate. 
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Table 7: Average simulation statistics from n behavioural simulations for streamflow and δ18OSF for the three model calibrations 

(using KPN43, REMOiso, and static inputs). 

Average statistics 

from n behavioural 

simulations 

KPN43 REMOiso Static 

n 321 / 30000 268 / 30000 216 / 30000 

Streamflow (1095 observations for performance evaluation) 

NSE 0.68 0.68 0.69 

|% Dv| 13.9 13.4 14.2 

|Log(% Dv)| 11.5 8.9 11.6 

δ
18

OSF (140 observations for performance evaluation) 

RMSE (‰) 1.39 1.32 2.09 

KGE 0.36 0.33 0.35 
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Table 8: Allowable parameter ranges and resulting averaged parameter characteristics for behavioural simulations retained from the three model 

calibrations (KPN43, REMOiso, and static inputs). Parameters are summarized as: median (minimum, maximum).  

Parameter 
Allowable 

Range 
KPN43 REMOiso static 

Jean Marie Sub-basin 

flz [1x10
-7

,  1x10
-4

] 8.60x10
-6

 (1.49x10
-7

, 9.32x10
-5

) 8.60x10
-6

 (2.03x10
-7

, 9.86x10
-5

) 8.60x10
-6

 (2.03x10
-7

, 9.86x10
-5

) 

pwr [1,  4] 3.05 (1.33, 4.00) 3.38 (1.12, 4.00) 3.39 (1.12, 3.96) 

theta [0.1,  1.0] 0.60 (0.13, 0.96) 0.61 (0.13, 1.0) 0.60 (0.13, 0.98) 

kcond [0.1,  1.5] 0.79 (0.17, 1.46) 0.68 (0.17, 1.46) 0.86 (0.17, 1.46) 

Blackstone Sub-basin 

flz [1x10
-7

,  1x10
-4

] 2.30x10
-5

 (4.19x10
-7

, 9.41x10
-5

) 4.91x10
-5

 (5.36x10
-7

, 9.95x10
-5

) 1.67x10
-5

 (3.02x10
-7

, 9.86x10
-5

) 

pwr [1,  4] 3.34 (1.82, 3.96) 3.21 (1.35, 3.96) 3.57 (2.28, 3.91) 

theta [0.1,  1.0] 0.55 (0.11, 1.0) 0.60 (0.13, 1.0) 0.52 (0.24, 1.0) 

kcond [0.1,  1.5] 0.69 (0.11, 1.41) 0.80 (0.21, 1.48) 0.69 (0.17, 1.49) 

Land Cover Weighted-Average Parameter results: median (minimum, maximum) 

fratio [0.1,  2.5] 0.70 (0.12, 2.22) 0.70 (0.15, 2.16) 0.80 (0.12, 2.23) 

ak [1,  50] 21.6 (2.1, 47.6) 25.8 (2.4, 47.5) 23.6 (1.2, 46.9) 

akfs [0.005,  2] 0.212 (.006, 1.878) 0.059 (0.006, 1.724) 0.203 (0.006, 1.850) 

rec [0.05,  1] 0.47 (0.08, 0.90) 0.46 (0.08, 0.88) 0.43 (0.09, 0.90) 

retn [10,  200] 122 (18, 189) 119 (23, 181) 114 (20, 186) 

ak2 [.001,  0.2] 0.013 (0.001, 0.188) 0.008 (0.001, 0.172) 0.021 (0.001, 0.184) 

fm [0.075, 0.2] 0.117 (0.076, 0.189) 0.119 (0.078, 0.190) 0.112 (0.076, 0.189) 

base [-3.5,  3.5] -0.20 (-3.28, 3.14) 0.34 (-2.81, 3.13) -0.35 (-3.11, 2.85) 

sub [0.1,  1.1] 0.53 (0.11, 1.05) 0.43 (0.13, 1.05) 0.50 (0.11, 1.05) 

 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-539, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 25 October 2016
c© Author(s) 2016. CC-BY 3.0 License.


