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Abstract. Rewetting is a necessary measure to stop CO2 emissions of degraded peatlands and to restore their natural habitat and

C accumulation function. Although the severity and frequency of droughts is predicted to increase as a consequence of climate

change, it is not well understood whether such extreme events can jeopardize rewetting measures. The goal of this study was

to better understand drought effects on peatland restoration measures. Based on long-term reference records, we investigated

anomalies in vegetation dynamics and CO2 exchange, including ecosystem respiration (Reco) and gross ecosystem productivity5

(GEP), in a rewetted fen during the extreme European summer drought 2018. Drought-induced vegetation dynamics were

derived from remotely sensed data.

Since flooding in 2010, the fen was characterized by a patchy mosaic of open water surfaces and vegetated areas. After

years of stagnant vegetation development, drought acted as a trigger event for pioneer species such as Tephroseris palustris

and Ranunculus sceleratus to rapidly close persistent vegetation gaps. The massive spread of vegetation assimilated substantial10

amounts of CO2. In 2018, the annual GEP budget increased by 20 % in comparison to average years (2010–2017). Reco

increased even by 40 %, but enhanced photosynthetic CO2 sequestration could compensate for half of the drought-induced

increase in respiratory CO2 release. Altogether, the restored fen remained a net CO2 sink in the year of drought, though net

CO2 sequestration was lower than in other years.

Our study reveals an important regulatory mechanism of restored fens to maintain their net CO2 sink function even in15

extremely dry years. Even in times of more frequent climate extremes, fen restoration can create ecosystems resilient to drought.

However, further research needs to focus on the long-term effects of such extreme events beyond the actual drought period.

1 Introduction

Peatlands constitute the largest terrestrial C store and exert significant feedback effects on the climate system (Gorham, 1991;

Frolking and Roulet, 2007; Yu et al., 2010). Among minerotrophic peatlands (fens) in mid Europe, 90 % have been drained,20

most of them for agricultural purposes (Pfadenhauer and Grootjans, 1999; Moen et al., 2017). Under drainage, oxgygen avail-
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ability initiates a cascade of organic matter breakdown that culminates in peat decomposition (Freeman et al., 2004; Fenner

and Freeman, 2011). In this way, drainage turns peatlands from CO2 sinks to CO2 sources.

Rewetting is a common measure to restore the natural habitat and C accumulation function of degraded fens. Although

rewetting may resume the emissions of methane (CH4), a strong, yet short-lived greenhouse gas, the resulting climate warming25

effect is outweighed by the savings of CO2 emissions in comparison to the previous drainage state (Günther et al., 2020).

Therefore, climate mitigation measures in peatlands need to focus primarily on the reduction of the CO2 source (Tiemeyer

et al., 2020). The successful implementation of peatland rewetting can be challenging, as the degradation processes provoked

by drainage are largely irreversible. Under intense compaction and decomposition, the peat surface can subside for several

decimeters (Leifeld et al., 2011) and rewetted fen areas can easily develop to shallow lakes with average water depths of30

20—60 cm (Steffenhagen et al., 2012). Slow or stagnant vegetation development retards the extensive spread of peatland

species as prerequisite for CO2 uptake and C accumulation (Timmermann et al., 2009; Koch et al., 2017). Further, even under

flooded conditions, respiratory CO2 release from peat decomposition can remain high (Franz et al., 2016) as the preceding

drainage-rewetting sequence might have increased labile C levels (Freeman et al., 2004; Fenner and Freeman, 2011).

Given the importance of hydrological conditions for peat conservation and formation, also meteorological drought can35

severely impact peatland functioning (Dise, 2009). In analogy to human-induced drainage, drought implies a lowering of the

ground water level which may enhance ecosystem respiration (Reco) and peat consumption (Alm et al., 1999; Lund et al.,

2012; Koebsch et al., 2013). Further, gross ecosystem productivity (GEP) may decrease as plant stress due to drought limits

photosynthetic CO2 uptake (Shurpali et al., 1995; Arneth et al., 2002; Lafleur et al., 2003; Lund et al., 2012). Altogether, years

of drought may turn peatlands from net CO2 sinks to sources of CO2 (Lafleur et al., 2003; Lund et al., 2012).40

In view of increasing frequency and severity of climatic extreme events (Pachauri et al., 2014), drought has the potential

to jeopardize peatland restoration goals (Lavendel, 2003; Harris et al., 2006). However, drought effects have been mostly

investigated in near-natural boreal bogs (Shurpali et al., 1995; Alm et al., 1999; Arneth et al., 2002; Lafleur et al., 2003;

Lund et al., 2012). As hydrological and vegetation characteristics differ between peatland types, the same drought-related

mechanisms may not necessarily occur in fens (Sulman et al., 2010). Even comparisons with pristine fens may be misleading,45

because the drainage-rewetting sequence irreversibly affects ecosystem functioning of restored fens (Koch et al., 2017). Hence,

a better understanding of drought-induced processes in restored fens is needed.

Here, we aim to elucidate the in situ effects of drought on vegetation development and CO2 exchange in rewetted fens. To this

end, we investigated the impact of the extreme summer drought 2018 on a rewetted degraded fen in north eastern Germany.

The drought event caused the water level to drop below the ground surface, for the first time since rewetting and therefore50

provided a good opportunity to investigate our research question. Vegetation development and CO2 exchange in our particular

fen site have been monitored since the rewetting started in 2010, which offers a valueable long-term reference record for the

assessment of drought-induced effects. Vegetation dynamics were evaluated both, quantitatively, using the enhanced vegetation

index (EVI) derived from MODIS, and, qualitatively, using vegetation mapping derived from multi-sensor data of an unmanned

aerial system (UAS). Drought effects on the net CO2 exchange, including its component fluxes Reco, and GEP were investigated55

based on a multi-year record of eddy covariance measurements (Montgomery, 1948; Baldocchi, 2003). This interdisciplinary
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long-term approach, including ecosystem-scale monitoring of vegetation development and CO2 exchange, allowed us to track

the response mechanisms of a rewetted fen to a severe drought event and to infer insights about the resilience of this novel

ecosystem in times of more frequently upcoming climate extremes.

2 Methods60

2.1 Site description

The study area "Rodewiese" (WGS84: N 54.211◦, E 12.178◦) is a coastal paludification fen in the nature reserve "Heiligensee

und Hütelmoor", located in north eastern Germany (Figure 1). The area has been heavily drained for grassland use since the

Figure 1. Study site. A: Location (City of Rostock). B (August 2015) and C (November 2018): Aerial photograph with vegetation survey

grid. From 2010 to 2017 (pre-drought), the fen was almost permanently inundated. At that time, the canopy consisted of a patchy mosaic of

open water and vegetated areas. During the drought 2018, the site fell completely dry, except for the former drainage ditches.
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1970s with water levels down to 1.6 m below ground. Under drainage, the peat was degraded strongly, and can, nowadays, be

described as sapric histosol. In winter 2009/2010, the site was rewetted with the goal to stop peat decomposition and to create a

self-regulating ecosystem and water fowl habitat. As a result of rewetting, the site became inundated year-round and the canopy65

turned to a patchy mosaic of different dominant species and open water areas. Since then, the vegetation was dominated by

stands of competitive emergent macrophytes such as Common Reed (Phragmites australis) and Lesser-Pond sedge (Carex

acutiformis) as well as Grey and Sea Club rush (Schoenoplectus tabernaemontani and Bolboschoenus maritimus). Both of

the two latter species present relics of former brackish impact from the near-by Baltic sea. Vegetation patterns were mostly

stable in the years following inundation with a slight tendency towards higher patch compactness. Koch et al. (2017) provide a70

detailed description of the vegetation development of 2011 until 2014.

2.2 Vegetation mapping

2.2.1 Preprocessing of the unmanned aerial system data

Unmanned aerial system data were collected to classify plant composition and distribution of the dominant species. In order to

assess the drought effect on vegetation, the changes observed in 2018 were related to the state prior to drought as described in75

Koch et al. (2017). Accordingly, the study area and processing routines for 2018 were harmonized to the best possible degree

with the approach used in Koch et al. (2017). In contrast to Koch et al. (2017) not only normal RGB data and texture indices

were available but also additional sensors as well as data types (additional wavelengths and geometrical information) were

used.

Aerial images were acquired in late autumn (1 November 2018) using an fixed-wing unmanned aerial system (UAS, Sensefly80

eBee Plus). As the UAS can operate only one camera at a time, high-resolution true color images (SenseFly S.O.D.A, 20 Mpix),

multispectral images (Parrot Sequoia, 4x 1.2 Mpix) and thermal images (SenseFly ThermoMap, 0.3 Mpix) were taken during

subsequent flights within a time frame where insolation can be considered as stable. The acquired images were then mosaiced

with the photogrammetric software Pix4D (Figure B1, appendix B1). The multisensor data set was processed as described in

Beyer et al. (2019) and, eventually, consisted of 107 bands: 3 RGB bands, 4 multispectral bands, and 1 thermal band, as well85

as 1 digital surface model (DSM), 74 spectral and 24 textural indices. The DSM was derived photogrammetrically using RGB

color information (Figure B1) and can, due to the flat topography of the study area, be interpreted as plant height proxy. The

texture indices were calculated as in Koch et al. (2017) for each RGB band. The 74 spectral indices were selected using the

Index Database (www.indexdatabase.de, Henrich et al. (2012, 2009)). The main reason to select such a high number of spectral

indices was not only to improve the classification accuracy but especially to get better knowledge of the importance of the90

specific wavelengths used within the multisensor data set. This approach continues the earlier study from Beyer et al. (2019).

All bands, indices and their meaning are listed in Appendix B3 (Table B1). Further, a Python script and an overview of the

used indices can be found on github.com/florianbeyer/SpectralIndices.
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2.2.2 Vegetation survey

Likewise, with the study of Koch et al. (2017), vegetation sampling in 2018 was conducted within an equidistant grid of 6495

circular plots, each with a 1m radius (Figure 1). The re-survey was conducted at the end of September and included total plant

coverage as well as species coverage (%). Among the 36 species found, only Phragmites australis, Schoenoplectus taber-

naemontani, Bolboschoenus maritimus, Tephroseris palustris, Ranunculus sceleratus, and Carex acutiformis were occuring in

dominant stands. Here, dominance was defined by (1) the per-plot-abundance and (2) the occurrence frequency across all 64

sample points (more than 30 times occurred in 65 plots or more than 50 % occurrence per plot). These six dominant species100

were, in concert with bare peat and open water, incorporated as surface classes in the following analysis.

2.2.3 Vegetation classification

To classify the vegetation cover, we used the Random Forest (RF, Breiman (2001)) classifier with 500 trees and a minimum

branching depth of 2. RF has proven to be a robust and efficient machine learning classification approach in previous remote

sensing studies (Beyer et al., 2015; Belgiu and Drăguţ, 2016; Beyer et al., 2019). On the basis of the vegetation mapping,105

a calibration data set was generated in GIS in order to train the RF. We assessed the performance of the RF model with an

independent validation data set. The RF classification algorithm achieved an overall accuracy of 99.84 %. Also, the single class

accuracies were high and ranged between 98 and 100 %. In addition, we extracted the importance of every single band in the

multisensor data set using the GINI coefficent (Archer and Kimes, 2008) in order to assess the most important input variables.

The results of the importance analysis is summarized in Table B2 (Appendix B3). The classification script can be found at110

github.com/florianbeyer/RandomForest-Classification.

2.3 CO2 flux processing

Net CO2 exchange was determined with the eddy covariance approach, which provides a continuous time series of half hourly

fluxes on ecosystem scale. The setup comprised an open-path infrared gas analyzer (IRGA, LI-7500, LI-COR, Lincoln, NE,

USA) measuring CO2 molar density and a three-dimensional sonic anemometer (CSAT3, Campbell Scientific, Logan, UT,115

USA) measuring wind velocities and sonic temperature. All signals were recorded by a CR3000 Micrologger (Campbell

Scientific, Logan, Utah) with a scan rate of 10 Hz. The tower is installed in the middle of the test site (see Figure 1) and has a

maximum spatial measuring footprint of 300 m. The main footprint climatology (90 % to the growing season flux), however,

happens in a radius of around 200 m (Figure B2, Appendix B2) and was identified in Koebsch et al. (2013).

Half-hourly net CO2 fluxes were processed with the software EddyPro version 6.0.0 (LI-COR, Lincoln, NE, USA) using the120

common corrections for open path eddy covariance set ups. Refer to Koebsch et al. (2013) and Koebsch et al. (2015) for more

details on the setup and the complete sequence of flux processing steps.

Data gaps in the CO2 flux time series were filled using artificial neural networks (ANNs, Bishop (1995)) based on the

common back propagation algorithm incorporated in the R package neuralnet (R Core Team 2019; Fritsch 2016). Gap filling

was conducted in two steps: (1) For small data gaps < 24 hours, we set up several ANNs that predicted half-hourly fluxes125
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separately for each year. (2) For larger data gaps > 24 hours, we aggregated the data set day-wise and set up a single ANN

that encompassed all available measurements from 2009 to 2018. Input variables for all ANNs included air temperature, global

radiation, and EVI, as well as fuzzy-transformed variables for time of day and season. A simple architecture comprising one

hidden layer and 3–4 nodes proved applicable for all ANNs. Validation of the ANNs with an independent data subset yielded

determination coefficients ranging from 0.63–0.83 for half hourly fluxes and 0.77 for daily aggregated fluxes.130

The net ecosystem exchange of CO2 (NEE) was further partitioned into its two component fluxes gross ecosystem produc-

tivity (GEP) and ecosystem respiration (Reco, eq. 1).

NEE = Reco−GEP (1)

Hereby, GEP represents the photosynthetic sequestration of CO2 from the atmosphere into the canopy, whilst Reco represents

the CO2 release by autotrophic and heterotrophic respiration into the atmosphere. We partitioned NEE into its component fluxes135

with an ANN algorithm that predicted Reco from the daily aggregated nighttime fluxes (global radiation threshold < 5 W/m2).

Subsequently, we calculated GEP from the difference between the measured daytime NEE and modeled Reco. Input variables

for the ANN included air temperature, water level, EVI, as well as fuzzy-transformed variables for different seasons. The ANN

was build from one hidden layer and 4 nodes. Validation of the ANN yielded a determination coefficient for the nighttime

fluxes of 0.88.140

2.4 Auxiliary data

Meteorological measurements since 2009 were conducted directly at the eddy covariance tower and logged in 30 minute

intervals. Measurements included (1) global radiation (Rg), measured with a pyranometer (CMP 3; Kipp & Zonen, Delft, the

Netherlands), (2) air temperature (HMP45C, Vaisala, Vantaa, Finland) (3) and precipitation (52203 RM Young). Minor Data

gaps were filled with data from a nearby station of the German Weather Service (DWD) in 7.5 km distance to our field station145

(cdc.dwd.de/portal/ Stations-ID: 4271). DWD weather data were also used for the meteorological long-time reference period

1999–2017.

The water level time series was reconstructed back to 2010 from manual discrete measurements and pressure-compensated

automated measurements (Onset U20-001-01 Water Level Data Logger, Onset, Bourne, USA). The final water level time series

is referenced to the average elevation height of the fen with positive values indicating water levels above surface.150

From the MODIS data products the enhanced vegetation index (EVI) as proxy for plant phenology and vitality was ob-

tained using the NASA AppEEARS tool (lpdaacsvc.cr.usgs.gov/appeears/). EVI values were retrieved from MOD13A1 and

MYD13A1 pixel (covering our test site) for the entire time series 2010–2018 congruent with the eddy covariance flux clima-

tology (Figure B2, Appendix B2). EVI allows the assessment of vegetation development on canopy level which fits very well

to the footprint of the EC tower in our test site 1. We combined data from both MODIS satellites, Aqua and Terra, and there-155

fore obtained an EVI time series of 8 day intervals. Values were filtered according to pixel reliability and pixel-wise quality

assessment and data gaps were subsequently filled by linear interpolation.
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Table 1. Annual means and sums of certain climatic and other parameters used in the manuscript from 2010–2018.

Year Temperature Precipitation Radiation Water level Enhanced Vegetation Index

annual mean annual sum annual sum annual mean annual mean

(°C) (mm) (kW/m2) (cm)

2010 8.1 706 2096.399 36 0.28

2011 9.8 955 2109.110 41 0.25

2012 9.2 490 2103.767 20 0.26

2013 9.4 611 2183.956 24 0.27

2014 10.7 553 2224.981 19 0.28

2015 10.3 611 2223.394 26 0.27

2016 10.1 479 2160.338 25 0.27

2017 10.1 746 2075.759 39 0.27

2018 10.7 457 2369.617 17 0.32

3 Results and Discussion

3.1 Meteorological and hydrological conditions in 2018

At the study site, 2018 was among the warmest and sunniest years within the reference period (1999–2018; Figure 2) with only160

2003 sharing the same low precipitation sums (457 mm). Hence, 2018 was also the driest year since rewetting of the fen started

in 2010. Mean annual temperature amounted to 10.8 ◦C which was 1 K above the long term average of the reference period

and global radiation in 2018 summed up to 2,370 kW m−2 which exceeded the long term radiation sum by 213 kW m−2. Total

precipitation sum in 2018 was 160 mm below the long term average total (617 mm (Figure 2b).

Drought, excessive heat and radiation in 2018 occurred primarily from April to July. During these months, the mean tem-165

perature exceeded the long term average April–July temperature (14.0 ◦) by 1.9 K. The global radiation sum during April–July

2018 exceeded the average radiation sum by 140 kW m−2 (long term average: 1,277 kW m−2). Furthermore, precipitation

from April to July 2018 summed up to only 111 mm, which is less than half of the rainfall occurring in average years (228

mm). In particular, May 2018 was extraordinarily dry with only 5 mm of rainfall (average May rainfall: 51 mm).

The spatially averaged, mean annual water level (Figure 3a and Table 1) in 2018 was 17 cm above surface level (a.s.l.) which170

is in the lower range of post-rewetting water levels (20–40 cm a.s.l. from 2010–2018). However, meteorological conditions

induced a pronounced hydrological variation during the course of 2018. As a result of unusually high precipitation in the

previous year (746 mm), water level was still extraordinarily high (̃0.4 m a.s.l.) until early spring 2018 but decreased rapidly

due to rainfall deficit starting in April. Whilst the fen had been permanently inundated since the rewetting in 2010, the water

level dropped below ground surface in August 2018. A water level minimum of 0.4 m below surface level (b.s.l.) was met in175

October.
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Figure 2. Air temperature (a), cumulative precipitation (b) and cumulative global radiation (c) over the course of the year. Variables are

represented as black line for 2018 whereas the grey shading represents the variable range (minimum-maximum) throughout the reference

period 1999–2017.
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Figure 3. Water level (a) and enhanced vegetation index (b, EVI) over the course of the year. Variables are represented as black line for 2018

whereas the grey shading represents the variable range (minimum-maximum) throughout the reference period 2010–2017.

3.2 Vegetation response to drought

3.2.1 Species shift

Rewetting of the fen in 2010 initiated a shift towards flooding resistant species Koch et al. (2017). However, these dynamics

were confined only to the first 1–2 years after rewetting, whilst vegetation development stagnated in the following and provided180

a stable baseline for the investigation of drought effects. In 2014 (Figure 4a), which serves as reference year for the vegetation

situation prior to drought, the fen canopy consisted of Phragmites australis (47.8 %), Schoenoplectus tabernaemontani (21.0

%), open water (20.5 %) Carex acutiformis (5.6 %), and Bolboschoenus maritimus (5.1 %). Field observations proved these

area proportions to remain stable until 2017. With the exception of Phragmites, which constituted the dominant species (areal

proportions of 44.4 %), the drought 2018 dramatically changed the species composition of the site (Figure 4b). When rain185

failed to fall, open water patches dried up completely and were colonized by Tephroseris palustris and Ranunculus scelera-

tus. Both are pioneer species that can rapidly spread along the nutrient-rich shores of dried-up water bodies (Henker et al.,

2006). Though of minor abundance in previous years, (Leipe and Leipe, 2017), in 2018, Tephroseris palustris and Ranunculus

sceleratus gained a spatial coverage of 26.6% within a few weeks. The spatial proportion of both Bolboschoenus maritimus

and Schoenoplectus tabernaemontani decreased from 26.1 down to 6.3 % in 2018. In contrast to previous years, when each of190

these species formed extensive clusters, they now appeared strongly dispersed and were therefore merged into a single veg-

etation class. In contrast, the areal coverage of Carex acutiformis, a species adapted to moist conditions, increased from 5.6
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to 17.3 %. Hence, after years of stagnation, drought changed the species composition of the fen within weeks: Dried-up open

water patches served as habitat for fast-growing pioneer plants, but also the established vegetation responded with substantial

withdrawal of flooding-adapted species and a spread of species adapted to moderate moisture.

(a) Vegetation composition 2014. (b) Vegetation composition 2018.

Figure 4. Vegetation composition in 2014 (4a) as presented in Koch et al. (2017) and after the drought in 2018 (4b, black border marks study

site extend of Koch et al. (2017)).

195

3.2.2 Seasonal dynamics

Vegetation dynamics, expressed by the EVI, were exceptional in 2018. The EVI increased rapidly from a comparatively low

initial value of 0.1 in February/March to a new maximum of 0.53 at the start of July. The steep spring-time rise and the high

summer peak in EVI can most likely be attributed to the rapid growth of the established vegetation which was triggered by high

temperatures and radiation supply from April on. However, in comparison to other years, EVI decreased early at the beginning200

of July 2018, which marked the onset of drought-related changes in canopy reflectance when water level dropped below 0.2 m
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a.s.l. At that time, extensive vegetation areas were already affected by drought, even if the spatially averaged water level was

still relatively high. During the following months, the subsequent downward trend in EVI slowed down considerably. From

September 2018 on, EVI was distinctively higher than normally, indicating an extension of the growing season until late in

the year. Mean annual EVI of 0.32 in 2018 compared to the mean of time series 2010–2017 0.27 (std = 0.009) supports this205

conclusion (Table 1).

3.3 Response of CO2 exchange to drought

The restored fen site is highly productive with substantial rates of GEP and Reco (Koebsch et al., 2013). Despite strong inter-

annual variation, the fen has acted as net CO2 sink since rewetting with average NEE budgets of -0.70 kg m−2 a−1 (Koebsch

et al., 2013). New record levels of Reco and GEP were reached in 2018 (Figure 5a and 5b): The annual Reco budget totalled210

3.22 kg CO2 m−2 and exceeded the post-rewetting average by 0.93 kg m−2. Further, with -3.61 kg CO2 m−2 total annual GEP

exceeded the average photosynthetic CO2 uptake by 0.63 kg m−2. Hence, in 2018 the fen remained a net CO2 sink, though net

CO2 sequestration was 0.30 kg m−2 lower than in average post-rewetting years.

NEE and its component fluxes marked seasonal dynamics including a decoupling of GEP and Reco when drought took

effect from July 2018 on (Figure 5c). Before July, daily Reco and GEP sums were in the upper range of normal years. This215

is most likely due to high temperatures and radiation supply which fostered efficient growth of the established vegetation. As

the rise in C assimilation outweighed the increase in respiratory CO2 release, the first weeks in the growing season 2018 also

exhibited comparatively high rates of net CO2 uptake. GEP peaked at -37 g CO2 m−2 d−1 in June/July which coincided with

the maximum EVI. Following this peak, photosynthetic CO2 uptake decreased substantially, which was likely driven by the

onset of drought-induced stress for the established vegetation. At the same time, Reco maintained its upward trend and reached220

a new record of 25 g CO2 m−2 d−1 at the end of July. Reco remained on this plateau for the following two months, reflecting a

persistent CO2 loss due to both, peat and plant decomposition. In normal years, the fen smoothly shifts from being a net CO2

sink to a net CO2 source at the end of the growing season. The dry spell in summer 2018, however, caused a rapid switch from

net CO2 sink to CO2 neutrality already in July. After the drought-related decline in July 2018, GEP increased again in August.

This 2nd peak in GEP coincided with the observed colonization of dried-up areas by Tephroseris palustris and Ranunculus225

sceleratus. Biomass accumulation through the massive spread of these species held GEP rates high until late in the growing

season.

4 Drought response mechanisms of restored fens

Pristine peatlands are adaptive systems characterized by quasi-stable equilibrium states and feature resilience mechanisms to

cope with drought to a certain extent (Dise, 2009). The ecohydrology of intact peat is characterized by its large water holding230

capacity and its capillary wicking processes (Ingram, 1987; Lapen et al., 2000). Whilst these present efficient regulation mecha-

nism to buffer short-term dry spells, persistent drought or increasing drought frequency can also induce shifts in vegetation and

C regime (Couwenberg and Joosten, 1999; Couwenberg et al., 2008). In mires, drought can induce changes from low-phenolic
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Figure 5. Component fluxes GEP (a) and Reco of NEE (c) over the course of the year. Variables are represented as black line for 2018

whereas the grey shading represents the variable range (minimum-maximum) throughout the reference period 2010–2017.
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Sphagnum/herbs towards phenol-rich shrub vegetation which increases C sequestration and protects soil C (Riutta et al., 2007;

Limpens et al., 2008; Wang et al., 2015). Drought can even trigger abrupt episodes of habitat conversion, which are essential235

for the succession trajectory of peatlands. Such drought-induced state-shifts are known for kettle peatland development and are

associated with greatly increased C accumulation rates (Ireland et al., 2012).

Analogue climate-feedback mechanisms cannot be anticipated for degraded restored fens, where catchment hydrology, soil

and trophic conditions as well as propagule availability have been subject to irreversible change (van Diggelen et al., 2006;

Klimkowska et al., 2010). Here, we describe a distinct response mechanism of such newly created systems to severe drought:240

Sinking water levels exposed bare spots, that were rapidly colonized by pioneer species. Hence, after years of stagnant vege-

tation development, drought acted as a trigger event to close persistent vegetation gaps. During the build-up of new biomass,

substantial amounts of CO2 were sequestered which overcompensated for the drought-induced decline of photosynthetic CO2

uptake by the established vegetation. On an annual basis, enhanced GEP offset half of the drought-induced increase in Reco.

Therefore, the restored fen maintained its net CO2 sink function even in such a year of extreme drought.245

Further, our study shows, how drought-induced founding effects can give impetus to overcome stagnant vegetation suc-

cession of rewetted fens, the canopies of which are often interspersed by more or less extended open water patches where

vegetation cannot take root (Steffenhagen et al., 2012; Matthes et al., 2014; Franz et al., 2016). However, the relevance of

drought-induced founding events for the long-term succession of restored fens will rely on the capability of the newly formed

vegetation to gain a lasting foothold in these systems. Dependent on whether these pioneer species can cope with the recurrent250

water level rise (Koch et al., 2017), they will contribute to the ecosystems C budget in one way or the other and could initiate

silting processes that set the stage for subsequent peat-forming vegetation.

Clearly, further long-term observations are needed to comprehensively elucidate the aftereffects of drought for the devel-

opment of rewetted fens. Though, in practice, it is difficult to unravel such aftereffects of past events from contemporary

influences. For example, we could still observe the presence of Tephroseris palustris, despite the resuming water level rise255

in the year after the drought. However since the majority of the resupplied water originated from an episodic brackish water

intrusion event in January 2019, we cannot generalize the observations from 2019 to common freshwater fens. Although our

observations are confined to the year of drought, it is conceivable, that such extreme events initiate distinct carry-over effects

that extend beyond the actual drought period and can set the course for the future development of restored fens and their C

cycle.260

Code availability. Both, the classification script and the script to calculate spectral indices can be found at github.com/florianbeyer/RandomForest-

Classification and github.com/florianbeyer/SpectralIndices.
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Appendix B: Supplementary material265

B1 UAS data sets

Figure B1. True color, multispectral (band combination: near infrared|red|green), digital surface model and thermal orthomosaic of the

multisensor UAS data.
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B2 Modis footprint

Figure B2. Spatial comparison of the different data, sampling points, Eddy Covariance (EC) tower footprint and Modis’ ground sampling

distance.

15

https://doi.org/10.5194/bg-2020-215
Preprint. Discussion started: 10 July 2020
c© Author(s) 2020. CC BY 4.0 License.



B3 Bands of the Multisensor data set and its importances for classification

Table B1. Multisensor data set consits of 107 bands. All indices are described in github.com/florianbeyer/SpectralIndices.

No. Band name Type/Meaning Data from Derived from No. Band name Type/Meaning Data from Derived from

1 RGB1 Blue RGB Sensor 55 fe3 Spectral Index Multispectral Sensor

2 RGB2 Green RGB Sensor 56 gemi Spectral Index Multispectral Sensor

3 RGB3 Red RGB Sensor 57 gndvi Spectral Index Multispectral Sensor

4 MS1 Green Multispectral Sensor 58 osavi1 Spectral Index Multispectral Sensor

5 MS2 Red Multispectral Sensor 59 osavi2 Spectral Index Multispectral Sensor

6 MS3 Red Edge Multispectral Sensor 60 pvr Spectral Index Multispectral Sensor

7 MS4 Near Infrared Multispectral Sensor 61 rdvi Spectral Index Multispectral Sensor

8 DSM Digital Surface Model (DSM) RGB Sensor 62 rededge2 Spectral Index Multispectral Sensor

9 th_index Thermal Thermal Sensor 63 savi Spectral Index Multispectral Sensor

10 ngrdi Spectral Index RGB Sensor 64 sbl Spectral Index Multispectral Sensor

11 tgi Spectral Index RGB Sensor 65 spvi Spectral Index Multispectral Sensor

12 vari Spectral Index RGB Sensor 66 tc_gvimss Spectral Index Multispectral Sensor

13 exg Spectral Index RGB Sensor 67 tc_nsimss Spectral Index Multispectral Sensor

14 gcc Spectral Index RGB Sensor 68 tc_sbimss Spectral Index Multispectral Sensor

15 gli Spectral Index RGB Sensor 69 tc_yvimss Spectral Index Multispectral Sensor

16 ari Spectral Index Multispectral Sensor 70 tcari Spectral Index Multispectral Sensor

17 arvi2 Spectral Index Multispectral Sensor 71 tcari_osavi Spectral Index Multispectral Sensor

18 atsavi Spectral Index Multispectral Sensor 72 tcari2 Spectral Index Multispectral Sensor

19 avi Spectral Index Multispectral Sensor 73 tci Spectral Index Multispectral Sensor

20 bri Spectral Index Multispectral Sensor 74 tvi Spectral Index Multispectral Sensor

21 ccci Spectral Index Multispectral Sensor 75 varirededge Spectral Index Multispectral Sensor

22 chlgreen Spectral Index Multispectral Sensor 76 wdrvi Spectral Index Multispectral Sensor

23 chlrededge Spectral Index Multispectral Sensor 77 ndrdi Spectral Index Multispectral Sensor

24 cigreen Spectral Index Multispectral Sensor 78 ndre Spectral Index Multispectral Sensor

25 cirededge Spectral Index Multispectral Sensor 79 ndvi Spectral Index Multispectral Sensor

26 ctvi Spectral Index Multispectral Sensor 80 nli Spectral Index Multispectral Sensor

27 cvi Spectral Index Multispectral Sensor 81 normg Spectral Index Multispectral Sensor

28 datt1 Spectral Index Multispectral Sensor 82 normnir Spectral Index Multispectral Sensor

29 datt4 Spectral Index Multispectral Sensor 83 normr Spectral Index Multispectral Sensor

30 ddn Spectral Index Multispectral Sensor 84 band1_Energy Texture Index RGB Sensor

31 diff1 Spectral Index Multispectral Sensor 85 band1_Entropy Texture Index RGB Sensor

32 diff2 Spectral Index Multispectral Sensor 86 band1_Correlation Texture Index RGB Sensor

33 dvimss Spectral Index Multispectral Sensor 87 band1_InverseDifferenceMoment Texture Index RGB Sensor

34 gosavi Spectral Index Multispectral Sensor 88 band1_Inertia Texture Index RGB Sensor

35 grndvi Spectral Index Multispectral Sensor 89 band1_ClusterShade Texture Index RGB Sensor

36 lai Spectral Index Multispectral Sensor 90 band1_ClusterProminence Texture Index RGB Sensor

37 lci Spectral Index Multispectral Sensor 91 band1_HaralickCorrelation Texture Index RGB Sensor

38 logr Spectral Index Multispectral Sensor 92 band2_Energy Texture Index RGB Sensor

39 maccioni Spectral Index Multispectral Sensor 93 band2_Entropy Texture Index RGB Sensor

40 mari Spectral Index Multispectral Sensor 94 band2_Correlation Texture Index RGB Sensor

41 mcari Spectral Index Multispectral Sensor 95 band2_InverseDifferenceMoment Texture Index RGB Sensor

42 mcari_mtvi2 Spectral Index Multispectral Sensor 96 band2_Inertia Texture Index RGB Sensor

43 mcari_osavi Spectral Index Multispectral Sensor 97 band2_ClusterShade Texture Index RGB Sensor

44 mcari1 Spectral Index Multispectral Sensor 98 band2_ClusterProminence Texture Index RGB Sensor

45 mcari2 Spectral Index Multispectral Sensor 99 band2_HaralickCorrelation Texture Index RGB Sensor

46 mgvi Spectral Index Multispectral Sensor 100 band3_Energy Texture Index RGB Sensor

47 mnsi Spectral Index Multispectral Sensor 101 band3_Entropy Texture Index RGB Sensor

48 msavi Spectral Index Multispectral Sensor 102 band3_Correlation Texture Index RGB Sensor

49 msbi Spectral Index Multispectral Sensor 103 band3_InverseDifferenceMoment Texture Index RGB Sensor

50 msr670 Spectral Index Multispectral Sensor 104 band3_Inertia Texture Index RGB Sensor

51 mtvi2 Spectral Index Multispectral Sensor 105 band3_ClusterShade Texture Index RGB Sensor

52 myvi Spectral Index Multispectral Sensor 106 band3_ClusterProminence Texture Index RGB Sensor

53 evi2 Spectral Index Multispectral Sensor 107 band3_HaralickCorrelation Texture Index RGB Sensor

54 evi22 Spectral Index Multispectral Sensor
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Table B2. All bands of the multisensor data set orderd by the GINI coefficient. The higher the GINI the more important is the band for the

Random Forest classification.

No. Band Gini Gini (%) c. Gini No. Band Gini Gini (%) cumulative Gini

8 DSM 0.06415 6.4 6.4 63 savi 0.00618 0.6 85.0

35 grndvi 0.03760 3.8 10.2 100 band3_Energy 0.00596 0.6 85.6

82 normnir 0.03268 3.3 13.4 85 band1_Entropy 0.00560 0.6 86.1

17 arvi2 0.02773 2.8 16.2 106 band3_ClusterProminence 0.00556 0.6 86.7

50 msr670 0.02674 2.7 18.9 96 band2_Inertia 0.00551 0.6 87.2

74 tvi 0.02510 2.5 21.4 45 mcari2 0.00539 0.5 87.8

38 logr 0.02499 2.5 23.9 87 band1_InverseDifferenceMoment 0.00522 0.5 88.3

76 wdrvi 0.02460 2.5 26.4 43 mcari_osavi 0.00522 0.5 88.8

52 myvi 0.02302 2.3 28.7 93 band2_Entropy 0.00517 0.5 89.3

49 msbi 0.02271 2.3 30.9 54 evi22 0.00498 0.5 89.8

40 mari 0.02140 2.1 33.1 95 band2_InverseDifferenceMoment 0.00492 0.5 90.3

30 ddn 0.02102 2.1 35.2 48 msavi 0.00486 0.5 90.8

5 MS2 0.02093 2.1 37.3 80 nli 0.00485 0.5 91.3

79 ndvi 0.02086 2.1 39.4 102 band3_Correlation 0.00485 0.5 91.8

26 ctvi 0.01867 1.9 41.2 53 evi2 0.00478 0.5 92.3

34 gosavi 0.01826 1.8 43.0 101 band3_Entropy 0.00477 0.5 92.7

67 tc_nsimss 0.01819 1.8 44.9 84 band1_Energy 0.00456 0.5 93.2

64 sbl 0.01775 1.8 46.6 66 tc_gvimss 0.00443 0.4 93.6

83 normr 0.01750 1.7 48.4 29 datt4 0.00435 0.4 94.1

47 mnsi 0.01665 1.7 50.1 36 lai 0.00432 0.4 94.5

31 diff1 0.01630 1.6 51.7 44 mcari1 0.00432 0.4 94.9

68 tc_sbimss 0.01529 1.5 53.2 81 normg 0.00386 0.4 95.3

75 varirededge 0.01527 1.5 54.7 104 band3_Inertia 0.00370 0.4 95.7

70 tcari 0.01515 1.5 56.3 65 spvi 0.00367 0.4 96.0

7 MS4 0.01454 1.5 57.7 11 tgi 0.00301 0.3 96.3

22 chlgreen 0.01404 1.4 59.1 98 band2_ClusterProminence 0.00291 0.3 96.6

60 pvr 0.01399 1.4 60.5 4 MS1 0.00289 0.3 96.9

6 MS3 0.01375 1.4 61.9 105 band3_ClusterShade 0.00275 0.3 97.2

55 fe3 0.01319 1.3 63.2 90 band1_ClusterProminence 0.00268 0.3 97.5

33 dvimss 0.01283 1.3 64.5 32 diff2 0.00257 0.3 97.7

24 cigreen 0.01272 1.3 65.8 14 gcc 0.00246 0.2 98.0

19 avi 0.01267 1.3 67.0 15 gli 0.00240 0.2 98.2

9 th_index 0.01096 1.1 68.1 89 band1_ClusterShade 0.00222 0.2 98.4

27 cvi 0.01083 1.1 69.2 59 osavi2 0.00169 0.2 98.6

57 gndvi 0.00977 1.0 70.2 10 ngrdi 0.00160 0.2 98.8

71 tcari_osavi 0.00975 1.0 71.2 86 band1_Correlation 0.00145 0.1 98.9

77 ndrdi 0.00957 1.0 72.1 12 vari 0.00144 0.1 99.1

107 band3_HaralickCorrelation 0.00896 0.9 73.0 69 tc_yvimss 0.00142 0.1 99.2

58 osavi1 0.00885 0.9 73.9 94 band2_Correlation 0.00097 0.1 99.3

56 gemi 0.00879 0.9 74.8 97 band2_ClusterShade 0.00085 0.1 99.4

91 band1_HaralickCorrelation 0.00874 0.9 75.7 78 ndre 0.00070 0.1 99.4

103 band3_InverseDifferenceMoment 0.00838 0.8 76.5 25 cirededge 0.00062 0.1 99.5

73 tci 0.00816 0.8 77.3 23 chlrededge 0.00059 0.1 99.6

16 ari 0.00811 0.8 78.1 72 tcari2 0.00058 0.1 99.6

18 atsavi 0.00773 0.8 78.9 21 ccci 0.00051 0.1 99.7

99 band2_HaralickCorrelation 0.00772 0.8 79.7 61 rdvi 0.00051 0.1 99.7

51 mtvi2 0.00727 0.7 80.4 37 lci 0.00051 0.1 99.8

20 bri 0.00686 0.7 81.1 62 rededge2 0.00050 0.1 99.8

42 mcari_mtvi2 0.00682 0.7 81.8 28 datt1 0.00046 0.0 99.9

88 band1_Inertia 0.00660 0.7 82.4 39 maccioni 0.00038 0.0 99.9

92 band2_Energy 0.00659 0.7 83.1 3 RGB3 0.00035 0.0 100.0

41 mcari 0.00643 0.6 83.7 13 exg 0.00029 0.0 100.0

46 mgvi 0.00627 0.6 84.3 1 RGB1 0.00011 0.0 100.0

2 RGB2 0.00009 0.0 100.0

17

https://doi.org/10.5194/bg-2020-215
Preprint. Discussion started: 10 July 2020
c© Author(s) 2020. CC BY 4.0 License.



Author contributions. Franziska Koebsch conceived the study. Florian Beyer and Franziska Koebsch carried out the experiments and wrote

the manuscript. Florian Jansen and Gerald Jurasinski revised the manuscript and contributed with helpful comments. Marian Koch revised270

the manuscript and conducted the first studies on which the manuscript is based. Birgit Schröder carried out the vegetation mapping and

helped with botanical issues.

Competing interests. The authors declare that they have no conflicts of interest.

Acknowledgements. This paper is dedicated to the memory of our dear colleague Dr. Marian Koch, whose work formed the basis for this

study. Marian sadly passed away during the final writing phase of this paper. We thank J. Harmuth and A. Stoll from the local administration275

of forest conservation for granting access to the study site. FB and FK were funded by the European Social Fund (ESF) and the Ministry

of Education, Science and Culture of Mecklenburg-Western Pomerania within the scope of the project WETSCAPES (ESF/14-BM-A55-

0034/16). This is Baltic TRANSCOAST publication xxxx. The Helmholtz Terrestrial Environmental Observatories (TERENO) Network

supported the long-term operation of the eddy covariance measurements. Special gratitude is owed to J. Hofmann for his tireless commitment

to field work under harsh conditions.280

18

https://doi.org/10.5194/bg-2020-215
Preprint. Discussion started: 10 July 2020
c© Author(s) 2020. CC BY 4.0 License.



References

Alm, J., Schulman, L., Walden, J., Nykänen, H., Martikainen, P., and Silvola, J.: Carbon balance of a boreal bog during a year with an excep-

tionally dry summer, Ecology, 80, 161–174, https://doi.org/10.1890/0012-9658(1999)080[0161:CBOABB]2.0.CO;2, https://esajournals.

onlinelibrary.wiley.com/doi/abs/10.1890/0012-9658%281999%29080%5B0161%3ACBOABB%5D2.0.CO%3B2, 1999.

Archer, K. J. and Kimes, R. V.: Empirical characterization of random forest variable importance measures, Computational Statistics & Data285

Analysis, 52, 2249–2260, https://doi.org/10.1016/j.csda.2007.08.015, http://linkinghub.elsevier.com/retrieve/pii/S0167947307003076,

2008.

Arneth, A., Kurbatova, J., Kolle, O., Shibistova, O. B., Lloyd, J., Vygodskaya, N. N., and Schulze, E.-D.: Comparative ecosystem–atmosphere

exchange of energy and mass in a European Russian and a central Siberian bog II. Interseasonal and interannual variability of CO 2 fluxes,

Tellus B: Chemical and Physical Meteorology, 54, 514–530, https://doi.org/10.3402/tellusb.v54i5.16684, https://www.tandfonline.com/290

doi/full/10.3402/tellusb.v54i5.16684, 2002.

Baldocchi, D. D.: Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and fu-

ture, Global Change Biology, 9, 479–492, https://doi.org/10.1046/j.1365-2486.2003.00629.x, http://doi.wiley.com/10.1046/j.1365-2486.

2003.00629.x, 2003.
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