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Abstract   

Anthropogenic  secondary  organic  aerosol  (ASOA),  formed  from  anthropogenic  emissions  of            

organic  compounds,  constitutes  a  substantial  fraction  of  the  mass  of  submicron  aerosol  in               

populated  areas  around  the  world  and  contributes  to  poor  air  quality  and  premature  mortality.                

However,  the  precursor  sources  of  ASOA  are  poorly  understood,  and  there  are  large  uncertainties                

in  the  health  benefits  that  might  accrue  from  reducing  anthropogenic  organic  emissions.  We               

show  that  the  production  of  ASOA  in  11  urban  areas  on  three  continents  is  strongly  correlated                  

with  the  anthropogenic  reactivity  of  specific  volatile  organic  compounds.  The  differences  in              

ASOA  production  across  different  cities  can  be  explained  by  differences  in  the  emissions  of                

aromatics  and  intermediate-  and  semi-volatile  organic  compounds,  indicating  the  importance  of             

controlling  these  ASOA  precursors.  With  an  improved  modeling  representation  of  ASOA  driven              

by  the  observations,  we  attribute  340,000  PM 2.5  premature  deaths  per  year  to  ASOA,  which  is                 

over  an  order  of  magnitude  higher  than  prior  studies.  A  sensitivity  case  with  a  more  recently                  

proposed  model  for  attributing  mortality  to  PM 2.5  (the  Global  Exposure  Mortality  Model)  results               

up  to  900,000  deaths.  A  limitation  of  this  study  is  the  extrapolation  from  regions  with  detailed                  

data  to  others  where  data  is  not  available.  Comprehensive  air  quality  campaigns  in  the  countries                 

in  South  and  Central  America,  Africa,  South  Asia,  and  the  Middle  East  are  needed  for  further                 

progress   in   this   area.      
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1.   Introduction   

Poor  air  quality  is  one  of  the  leading  causes  of  premature  mortality  worldwide   (Cohen  et                 

al.,  2017;  Landrigan  et  al.,  2018) .  Roughly  95%  of  the  world’s  population  live  in  areas  where                  

PM 2.5  (fine  particulate  matter  with  diameter  smaller  than  2.5  µm)  exceeds  the  World  Health                

Organization’s  10  µg  m ‒3  annual  average  guideline   (Shaddick  et  al.,  2018) .  This  is  especially  true                 

for  urban  areas,  where  high  population  density  is  co-located  with  increased  emissions  of  PM 2.5                

and  its  gas-phase  precursors  from  human  activities.  It  is  estimated  that  PM 2.5  leads  to  3  to  4                   

million  premature  deaths  per  year,  higher  than  the  deaths  associated  with  other  air  pollutants                

(Cohen  et  al.,  2017) .  More  recent  analysis  using  concentration-response  relationships  derived             

from  studies  of  populations  exposure  to  high  levels  of  ambient  PM 2.5  suggest  the  global                

premature   death   burden   could   be   up   to   twice   this   value    (Burnett   et   al.,   2018) .   

The  average  measured  chemical  composition  of  submicron  PM  (PM 1 ,  which  typically             

comprises  most  of  PM 2.5   (Wang  et  al.,  2015) )  for  various  megacities,  urban  areas,  and  outflow                 

regions  around  the  world  is  shown  in   Fig. 1 .  A  substantial  fraction  of  urban  PM 1  is  organic                  

aerosol  (OA),  which  is  composed  of  primary  OA  (POA,  organic  compounds  emitted  directly  in                

the  particle  phase)  and  secondary  OA  (SOA,  formed  from  chemical  reactions  of  precursor               

organic   gases).   SOA   is   typically   a   factor   of   2   to   3   higher   than   POA   for   these   locations.     

Understanding  the  gas-phase  precursors  of  anthropogenic  SOA  (ASOA,  defined  as  the             

SOA  formed  from  anthropogenic  volatile  organic  compounds  (AVOC)   (de  Gouw  et  al.,  2005;               

DeCarlo  et  al.,  2010) )  quantitatively  is  challenging   (Hallquist  et  al.,  2009) .  Though  the               

enhancement  of  ASOA  is  largest  in  large  cities,  these  precursors  and  production  of  ASOA  should                 

be  important  in  any  location  impacted  by  anthropogenic  emissions  (e.g.,   Fig. 1 ).  ASOA              
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comprises  a  wide  range  of  condensable  products  generated  by  numerous  chemical  reactions              

involving  AVOC  precursors   (Hallquist  et  al.,  2009;  Hayes  et  al.,  2015;  Shrivastava  et  al.,  2017) .                 

These  condensable  products  include  intermediate  volatile  organic  compounds  (IVOCS,  less            

volatile  than  traditional  VOCs  and  often  not  measured  or  considered   (Robinson  et  al.,  2007;                

Hayes  et  al.,  2015) )  and  semi  volatile  organic  compounds  (SVOCs,  less  volatile  than  IVOC  and                 

similarly   not   measured   or   considered).     

The  main  categories  of  gas-phase  precursors  that  dominate  ASOA  have  been  the  subject               

of  intensive  research.  Transportation-related  emissions  (e.g.,  tailpipe,  evaporation,  refueling)           

were  assumed  to  be  the  major  precursors  of  ASOA,  which  was  supported  by  field  studies                 

(Parrish  et  al.,  2009;  Gentner  et  al.,  2012;  Warneke  et  al.,  2012;  Pollack  et  al.,  2013) .  Yet,  budget                    

closure  of  observed  ASOA  mass  concentrations  could  not  be  achieved  with             

transportation-related  VOCs   (Ensberg  et  al.,  2014) .  The  contribution  of  urban-emitted  biogenic             

precursors  to  SOA  in  urban  areas  is  typically  small,  and  rather,  the  contribution  of  biogenic  SOA                  

(BSOA)  in  urban  areas  is  typically  dominated  by  regionally  advected  SOA  background  (e.g.,               

Hodzic  et  al.,  2009,  2010a;  Hayes  et  al.,  2013;  Janssen  et  al.,  2017 ).  BSOA  is  thought  to                   

dominate  globally   (Hallquist  et  al.,  2009) ,  but  as  shown  in   Fig. 1 ,  the  contribution  of  BSOA  (1%                  

to  20%)  to  urban  concentrations,  while  often  substantial,  is  typically  smaller  than  that  of  ASOA                 

(17%  to  39%)  (see  Sect.  2).  Recent  studies  have  indicated  that  emissions  from  volatile  chemical                 

products  (VCPs),  defined  as  pesticides,  coatings,  inks,  adhesives,  personal  care  products,  and              

cleaning  agents   (McDonald  et  al.,  2018) ,  as  well  as  cooking  emissions   (Hayes  et  al.,  2015) ,  are                  

important.  While  total  amounts  of  ASOA  precursors  released  in  cities  have  dramatically  declined               

(largely  due  to  three-way  catalytic  converters  in  cars   (Warneke  et  al.,  2012;  Pollack  et  al.,  2013;                  

4   

https://doi.org/10.5194/acp-2020-914
Preprint. Discussion started: 11 November 2020
c© Author(s) 2020. CC BY 4.0 License.



115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

Zhao  et  al.,  2017;  Khare  and  Gentner,  2018) ),  VCPs  have  not  declined  as  quickly   (Khare  and                  

Gentner,  2018;  McDonald  et  al.,  2018) .  Besides  a  few  cities  in  the  US   (Coggon  et  al.,  2018;                   

Khare  and  Gentner,  2018;  McDonald  et  al.,  2018) ,  extensive  VCP  emission  quantification  has               

not   yet   been   published.   

Due  to  the  uncertainty  on  the  ASOA  precursors  and  on  the  amount  of  ASOA  formed                 

from  them,  the  number  of  premature  deaths  associated  with  urban  organic  emissions  is  largely                

unknown.  Currently,  most  studies  have  not  included  ASOA  realistically  (e.g.,   Lelieveld  et  al.,               

2015;  Silva  et  al.,  2016;  Ridley  et  al.,  2018 )  in  source  apportionment  calculations  of  the                 

premature  deaths  associated  with  long-term  exposure  of  PM 2.5 .  These  models  represented  total              

OA  as  non-volatile  POA  and  “traditional”  ASOA  precursors  (transportation-based  VOCs),  which             

largely  under-predict  ASOA   (Ensberg  et  al.,  2014;  Hayes  et  al.,  2015;  Nault  et  al.,  2018;                 

Schroder  et  al.,  2018)  given  that  the  current  understanding  is  that  POA  is  volatile  and  contributes                  

to  ASOA  mass  concentration  (e.g.,   Grieshop  et  al.,  2009;  Lu  et  al.,  2018 ).  As  PM 1  and  SOA                   

mass  are  highest  in  urban  areas  ( Fig. 1 ),  also  shown  in  Jimenez  et  al.   (2009) ,  it  is  necessary  to                    

quantify  the  amount  and  identify  the  sources  of  ASOA  to  target  future  emission  standards  that                 

will  optimally  improve  air  quality  and  the  associated  health  impacts.  As  these  emissions  are  from                 

human  activities,  they  will  contribute  to  SOA  mass  outside  urban  regions  and  to  potential  health                 

impacts   outside   urban   regions   as   well.   

Here,  we  investigate  the  factors  that  control  ASOA  using  11  major  urban,  including               

megacities,  field  studies  ( Fig. 1  and   Table 1 ).  The  empirical  relationships  and  numerical  models              

are  then  used  to  quantify  the  attribution  of  premature  mortality  to  ASOA  around  the  world,  using                  

the  observations  to  improve  the  modeled  representation  of  ASOA.  The  results  provide  insight               
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into  the  importance  of  ASOA  to  global  premature  mortality  due  to  PM 2.5  and  further                

understanding   the   precursors   and   sources   of   ASOA   in   urban   regions.   

  

2.   Methods   

2.1   Ambient   Observations   

For  values  not  previously  reported  in  the  literature  ( Table S4 ),  observations  taken             

between  11:00  –  16:00  local  time  were  used  to  determine  the  slopes  of  SOA  versus                 

formaldehyde  (HCHO)  ( Fig. S2 ),  peroxy  acetyl  nitrate  (PAN)  ( Fig. S3 ),  and  O x  (O x  =  O 3  +  NO 2 )                 

( Fig. S4 ).  For  CalNex,  there  was  an  approximate  48%  difference  between  the  two  HCHO               

measurements  ( Fig. S1 ).  Therefore,  the  average  between  the  two  measurements  were  used  in  this               

study,  similar  to  what  has  been  done  in  other  studies  for  other  gas-phase  species   (Bertram  et  al.,                   

2007) .  All  linear  fits,  unless  otherwise  noted,  use  the  orthogonal  distance  regression  fitting               

method   (ODR).   

For  values  in   Table S4  through   Table S8  not  previously  reported  in  the  literature,  the               

following  procedure  was  applied  to  determine  the  emissions  ratios,  similar  to  the  methods  of                

Nault  et  al.   (2018) .  An  OH  exposure  (OH exp  =  [OH]×Δt),  which  is  also  the  photochemical  age                  

(PA),  was  estimated  by  using  the  ratio  of  NO x /NO y  ( Eq. 1 )  or  the  ratio  of                

m+p-xylene/ethylbenzene  ( Eq. 2 ).  For  the  m+p-xylene/ethylbenzene,  the  emission  ratio          

( Table S5 )  was  determined  by  determining  the  average  ratio  during  minimal  photochemistry,             

similar  to  prior  studies   (de  Gouw  et  al.,  2017) .  This  was  done  for  only  one  study,  TexAQS  2000.                    

This  method  could  be  applied  in  that  case  as  it  was  a  ground  campaign  that  operated  both  day                    

and  night;  therefore,  a  ratio  at  night  could  be  determined  when  there  was  minimal  loss  of  both                   
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VOCs.  The  average  emission  ratio  for  the  other  VOCs  was  determined  using   Eq. 3  after  the                 

OH exp  was  calculated  in   Eq. 1  or   Eq. 2 .  The  rate  constants  used  for  determining  OH exp  and                 

emission   ratios   are   found   in    Table S11 .   

Eq. 1   

Eq. 2   

Eq. 3   

  

2.2   Error   Analysis   of   Observations   

The  errors  that  will  be  discussed  here  are  in  reference  to   Fig. 5  and   Fig. 6  and   Table S4                  

either  come  from  the  1σ  uncertainty  in  the  slopes  (the  SOA  versus  O x ,  HCHO,  or  PAN  values)  or                    

propagation  of  uncertainty  in  observations.  For  SOA,  we  estimate  the  1σ  uncertainty  of  ~15%,                

which  is  lower  than  the  typical  1σ  uncertainty  of  the  AMS   (Bahreini  et  al.,  2009)  due  to  the                    

careful  calibrations  and  excellent  intercomparisons  in  the  various  campaigns  (see   Table 1  for              

references  for  the  AMS  comparisons).  For  ΔCO,  the  largest  uncertainty  is  associated  with  the                

CO  background   (Hayes  et  al.,  2013;  Nault  et  al.,  2018) ,  and  is  estimated  to  be  ~10%  at  0.5                    

photochemical  equivalent  days   (Hayes  et  al.,  2013) .  The  uncertainty  in  the  emission  ratios  is                

~10%   (Wang  et  al.,  2014;  de  Gouw  et  al.,  2017) ;  though,  it  may  be  higher  for  the  values                    
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calculated  here  (see  above)  due  to  the  uncertainty  in  CO  background,  rate  constants,  and                

photochemical  age.  Therefore,  for   Fig. 5 a,  the  uncertainty  in  the  y-values  is  18%  and  the                

uncertainty   in   the   x-values   is   10%.   For    Fig. 6 ,   the   uncertainty   in   the   measurement   is   21%.   

Another  potential  source  of  uncertainty  may  stem  from  the  fit  of  the  data  in   Fig. 5 a,  as  the                   

data  point  from  Seoul  (KORUS-AQ)  could  be  impacting  the  fit  due  to  the  difference  in  its  value                   

compared  to  the  other  locations.  A  sensitivity  analysis,  where  one  study  was  removed  and  a  new                  

fit  was  derived,  was  conducted  to  determine  the  impact  of  any  one  study  on  the  fit  reported  in                    

Fig. 5 a  (see   Table S10 ).  We  find  that  though  removing  the  Seoul  data  point  increases  the  slope,                 

the  value  is  still  within  the  uncertainty  and  statistically  significant  at  the  95%  confidence                

interval.  Thus,  the  data  from  Seoul  does  not  change  the  results  and  conclusions  reported  in  this                  

study.   

  

2.3   Emission   Inventories   for   Various   Urban   Areas   around   the   World   

 All  BTEX  (benzene,  toluene,  ethylbenze,  and  xylenes)  and  non-BTEX  aromatic  emissions              

are  shown  in   Table S5  (BTEX)  or   Table S8  (non-BTEX  aromatics)  and  are  described  above.  The                

emission  ratios  are  derived  from  ambient  measurements  utilizing  photochemical  aging            

techniques    (Nault   et   al.,   2018) .   

Details  of  the  emission  inventories  for  cities  in  the  US,  for  Beijing,  and  for  London/UK                 

used  here  to  estimate  the  IVOC:BTEX  emission  ratio  ( Fig. 2 )  and  thus  the  IVOC  emissions  can                 

be  found  in  SI  Sect.  1  through  3.  Briefly,  emissions  for  the  US  are  based  on  McDonald  et  al.                     

(2018) ,  for  China  on  the  Multi-resolution  Emission  Inventory  for  China  (MEIC)   (Zhang  et  al.,                

2009;  Zheng  et  al.,  2014,  2018;  Liu  et  al.,  2015;  Li  et  al.,  2017,  2019) ,  and  for  the  UK  on  the                       
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National  Atmospheric  Emissions  Inventory  (NAEI)   (EMEP/EEA,  2016) .  The  IVOC:BTEX           

emission  ratio  from  inventories  are  multiplied  with  the  observed  BTEX  measured  in  urban  air  to                 

estimate  IVOCs  emitted  in  each  region  ( Table S5 ),  including  North  America,  Europe,  and  Asia.               

This  ensures  IVOC  emissions  used  in  our  calculations  properly  reflect  differences  in  mixtures  of                

emission  sources  (e.g.,  mobile  sources  versus  VCPs)  that  vary  by  continent  for  each  field                

campaign.  Additionally,  we  rely  on  inventories  for  estimating  atmospheric  abundances  of  IVOCs              

because  it  has  been  challenging  to  measure  the  full  range  of  IVOC  precursors  that  are  emitted                  

into  urban  air   (Zhao  et  al.,  2014,  2017;  Lu  et  al.,  2018) .  In  particular,  many  of  the  IVOCs  emitted                     

from  VCPs  are  oxygenated,  which  are  challenging  to  measure  using  traditional  gas              

chromatography-mass  spectrometry  (GC-MS)  techniques.  Oxygenated  IVOCs  may  not  elute           

completely  through  a  non-polar  column,  and  are  likely  underestimated   (Zhao  et  al.,  2014) .  The                

bottom-up  IVOC:BTEX  ratios  for  the  US,  Beijing,  and  UK  are  described  in  greater  detail  in  SI                  

Sect.  S1  through  S3.  IVOC  emissions  are  classified  based  on  their  vapor  pressure  (effective                

saturation  concentration:  0.3  <  C*  <  3  x  10 6  μg  m -3 ),  with  the  vapor  pressure  estimated  by  the                    

SIMPOL.1  model   (Pankow  and  Asher,  2008) .  Unspeciated  mass  has  been  suggested  as  important               

SOA  precursors  from  gasoline  and  diesel  engines,  and  parameterized  by  n-tridecane  and              

n-pentadecane,  respectively   (Jathar  et  al.,  2014) .  For  VCPs,  the  volatility  distribution  of  VOCs  is                

in-between  that  of  gasoline  and  diesel  fuel.  Therefore,  n-tetradecane  was  suggested  as  a               

surrogate   for   unspeciated   mass   of   VCPs   by   McDonald   et   al.    (2018) .   

Similar  to  IVOCs,  the  ability  to  measure  the  full  range  of  SVOCs  emitted  into  urban  air  is                   

challenging.  Therefore,  we  estimate  SVOC  emission  ratios  relative  to  POA  mass  concentrations              

( Table S9 ),  as  described  by  Ma  et  al.   (2017) .  For  the  hydrocarbon-like  portion,  we  used  the                 
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volatility  distribution  from  Worton  et  al.   (2014)  to  estimate  SVOC,  as  this  is  associated  with                 

fossil  fuel  emissions  from  transportation   (Zhang  et  al.,  2005) .  For  the  other  POA,  we  used  the                  

volatility  distribution  from  Robinson  et  al.   (2007) ,  as  this  POA  is  typically  cooking  primary                

aerosol.   

 Fig. 3  shows  the  calculated  emission  ratio  versus  saturation  concentration  (c*)  for  the              

cities  with  emission  inventories.  The  saturation  concentration  for  SVOC  was  determined  as  part               

of  the  estimation  procedure  discussed  above.  For  IVOC,  the  emission  ratios  for  the  different                

sources  (gasoline,  diesel,  other  fossil  fuel  sources,  and  VCP  emissions)  were  split  into  the                

volatility  bins,  as  in  McDonald  et  al.   (2018) .  Finally,  for  BTEX  and  non-BTEX  aromatics,  and                 

other  VOC  emission  ratios  (see   Fig. 3  for  references  for  the  other  VOC  emission  ratios),  CRC                 

(Rumble,  2019)  or  SIMPOL.1   (Pankow  and  Asher,  2008)  (for  estimating  vapor  pressures  not  in                

CRC)   was   used   to   estimate   the   saturation   concentrations.   

  

2.4   ASOA   Budget   Analysis   of   Ambient   Observations   

To  calculate  the  ASOA  budget,  we  used  the  observed  BTEX  ( Table S5 )  and  non-BTEX               

aromatic  ( Table S8 )  emission  ratios,  the  emission  inventories  for  IVOC  (see  above),  and              

estimated  SVOCs  from  the  primary  OA  emissions  (see  above).  The  methods  to  calculate  ASOA                

from  emissions  have  been  described  in  detail  elsewhere   (Hayes  et  al.,  2015;  Ma  et  al.,  2017;                  

Schroder  et  al.,  2018) ,  and  are  briefly  described  here.  All  calculations  described  were  conducted                

with  the  KinSim  v4.02  chemical  kinetics  simulator   (Peng  and  Jimenez,  2019)  within  Igor  Pro  7                 

(Lake  Oswego,  Oregon),  and  are  summarized  in   Fig. S5 .  A  typical  average  particle  diameter  for                

urban  environments  of  ~200  nm   (Seinfeld  and  Pandis,  2006)  is  used  to  estimate  the                
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condensational  sink  term  for  the  partitioning  of  gas-to-particle,  although  condensation  is  always              

fast  compared  to  the  experiment  timescales.  Further,  we  assume  an  average  250  g  mol –1  molar                 

mass  for  OA  and  an  average  SOA  density  of  1.4  g  cm –3   (Vaden  et  al.,  2011;  Kuwata  et  al.,  2012) .                      

Finally,  all  models  are  initialized  with  the  campaign  specific  OA  background  (typically  ~2  µg                

sm –3 )  and  POA  ( Table S9 )  for  partitioning  of  gases  to  the  particle  phase,  and  ran  at  the  average                   

temperature   for   the   campaign.   

For  the  modeled  VOCs  (BTEX  and  non-BTEX  aromatics),  each  species  undergoes             

temperature-dependent  OH  oxidation  ( Table S11 ),  forming  four  SVOCs  that  partition  between            

gas-  and  particle-phase,  using  updated  SOA  yields  that  account  for  wall  loss   (Ma  et  al.,  2017) .                  

For  IVOCs,  the  emission  weighted  SOA  yields  and  rate  constants  from  the  “Zhao”  option   (Zhao                 

et  al.,  2014)  of  Ma  et  al.   (2017)  are  used,  and  the  products  are  apportioned  into  three  SVOC  bins                     

and  one  low-volatility  organic  compound  (LVOC)  bin  ( Fig. S5 ).  Finally,  SVOCs  undergo             

photooxidation  at  a  rate  of  4×10 –11  cm 3  molecules –1  s –1   (Dzepina  et  al.,  2009;  Hodzic  et  al.,                  

2010b;  Tsimpidi  et  al.,  2010;  Hodzic  and  Jimenez,  2011;  Hayes  et  al.,  2015;  Ma  et  al.,  2017;                   

Schroder  et  al.,  2018) ,  producing  one  product  per  oxidation  step,  with  yields  from  Robinson  et  al.                  

(2007)  for  cooking  and  other  SVOCs  and  yields  from  Worton  et  al.   (2014)  for  fossil  fuel  related                   

SVOCs,  as  recommended  by  Ma  et  al.   (2017) .  The  products  from  SVOC  and  IVOC  oxidation  are                  

allowed  to  further  oxidize,  as  highlighted  in   Fig. S5  and  described  in  prior  studies   (Hayes  et  al.,                  

2015;  Ma  et  al.,  2017;  Schroder  et  al.,  2018) .  Generally,  each  product  reacts  at  a  rate  of  4×10 –11                    

cm 3  molecules –1  s –1  to  produce  some  product  at  one  volatility  bin  lower,  adding  one  oxygen  to  the                   

compound  for  each  oxidation   (Dzepina  et  al.,  2009;  Tsimpidi  et  al.,  2010;  Hodzic  and  Jimenez,                

2011;  Hayes  et  al.,  2015;  Ma  et  al.,  2017;  Schroder  et  al.,  2018) .  An  update  includes                  
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fragmentation  for  a  fraction  of  the  molecules  that  are  oxidized,  as  described  in  Schroder  et  al.                  

(2018)  and  Koo  et  al.   (2014) .  As  shown  in   Fig. S5 ,  fragmentation  of  the  compound  occurs  as  it  is                    

oxidized  and  goes  down  one  volatility  bin.  For  further  oxidation  of  SVOCs  from  the  oxidation  of                  

primary  IVOCs,  one  oxygen  is  added  and  0.25  carbon  is  removed  per  step,  leading  to  an  increase                   

in  mass  of  1.03  (instead  of  1.07)  per  oxidation  step   (Koo  et  al.,  2014;  Schroder  et  al.,  2018) .  For                     

further  oxidation  of  products  from  primary  SVOC  emissions,  one  oxygen  is  added  and  0.5                

carbon  is  removed  per  step,  leading  to  an  increase  in  mass  of  0.99  (instead  of  1.07)  per  oxidation                    

step    (Koo   et   al.,   2014;   Nault   et   al.,   2018) .   

  

2.5   GEOS-Chem   Modeling   

The  model  used  in  this  study,  for  ASOA  apportionment  ( Fig. 1 ),  for  apportionment  of               

ASOA  to  total  PM2.5  for  premature  mortality  calculations  (Worldwide  Premature  Deaths  Due  to               

ASOA),  and  for  sensitivity  analysis  for  ASOA  production  and  emissions  on  premature  mortality               

calculations,  is  the  GEOS-Chem  v12.0.0  global  chemical  transport  model   (Bey  et  al.,  2001;  The                

International  GEOS-Chem  User  Community,  2018)  to  calculate  global  concentrations  of  PM 2.5            

and  ASOA  at  2°×2.5°  horizontal  resolution.  Goddard  Earth  Observing  System  –  Forward              

Processing  (GEOS-FP)  assimilated  data  from  the  NASA  Global  Modeling  and  Assimilation             

Office  (GMAO)  were  used  for  input  meteorological  fields.  The  model  was  run  for  2013  to  2018                  

to  take  into  account  interannual  variability  of  meteorological  impacts  onto  PM 2.5  (therefore,              

averaging  PM 2.5  over  variations  in  meteorology).  However,  the  HTAPv2  emission  inventory,             

which  was  used  for  anthropogenic  emissions   (Janssens-Maenhout  et  al.,  2015) ,  was  kept  constant               

for  the  5  years.  GEOS-Chem  simulates  gas  and  aerosol  chemistry  with  ~700  chemical  reactions.                
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GEOS-Chem  calculates  the  following  PM 2.5  species:  sulfate,  ammonium,  nitrate   (Park  et  al.,              

2006) ;  black  carbon  and  POA   (Park  et  al.,  2005) ;  SOA   (Pye  and  Seinfeld,  2010;  Marais  et  al.,                   

2016) ;  sea  salt  (accumulation  mode  only   (Jaeglé  et  al.,  2011) );  and,  dust   (Duncan  Fairlie  et  al.,                  

2007) .   

  

2.5.1   Biogenic   SOA     

For  monoterpene  and  sesquiterpene  SOAs,  we  used  the  default  complex  SOA  scheme              

(without  semi-volatile  POA)  using  the  two-product  model  framework   (Pye  and  Seinfeld,  2010) .              

This  scheme  calculates  initial  oxidation  of  VOCs  with  OH,  O 3 ,  and  NO 3 ,  and  resulting  products                 

are  assigned  to  four  different  gas-phase  semi-volatile  species  (TSOA0–3)  based  on  volatilities              

(c*  =  0.1,  1,  10,  100  µg  m -3 ).  Aerosol  and  gas  species  fractions  are  calculated  online  using  the                    

partitioning   theory,   and   all   are   removed   by   dry   and   wet   deposition   processes.     

For  isoprene  SOA,  we  used  the  explicit  isoprene  chemistry  developed  by  Marais  et  al.                

(2016) .  All  the  isoprene-derived  gas-phase  products,  including  isoprene  peroxy  radical,            

ISOPOOH,  IEPOX,  glyoxal,  and  methylglyoxal,  are  explicitly  simulated.  Irreversible           

heterogeneous  uptake  of  precursors  to  aqueous  aerosols  are  further  calculated  using  online              

aerosol   pH   and   surface   area.     

GEOS-Chem  was  used  to  estimate  the  relative  fractions  of  the  measured  SOA  in  our                

studies  between  anthropogenic  and  biogenic  (isoprene  and  monoterpene)  sources  ( Fig. 1 ).            

Extensive  research  has  been  conducted  to  evaluate  and  improve  the  models  performance  in               

predicting  BSOA,  as  summarized  in   Table S3 .  Though  these  evaluations  mainly  occurred  in  the               

southeast  US,  a  recent  study  has  also  included  more  global  observations  to  compare  with                
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GEOS-Chem   (Pai  et  al.,  2020) .  Generally,  GEOS-Chem  appears  to  overestimate  biogenically             

derived  SOA;  however,  the  model  predicted  SOA  is  typically  within  the  uncertainty  of  the  AMS                 

( Table S3 ).  The  overestimation,  though,  would  suggest  that  the  fraction  of  urban  SOA  may  be                

under-predicted  by  this  method,  whereas  the  BSOA  may  be  over-predicted.  Therefore,  in  urban               

regions,  the  amount  of  SOA  from  biogenic  sources  may  be  lower,  especially  after  the  rapid  SOA                  

enhancements  (within  12  to  24  equivalent  photochemical  hours  that  have  been  observed  around               

the  world   (Nault  et  al.,  2018) ).  Typically  the  BSOA  is  present  as  a  regional  background  and                  

subtracted  for  the  analyses  used  in  this  work,  which  focus  on  strong  urban  plumes  on  top  of  that                    

background    (Hayes   et   al.,   2013,   2015) .     

  

2.5.2   Default   GEOS-Chem   Sensitivity   to   ASOA   Simulations   

For  the  sensitivity  calculation  using  the  "traditional"  ASOA  precursors,  we  used  the              

two-product  model  framework   (Pye  and  Seinfeld,  2010) .  Benzene,  toluene,  and  xylene  are              

oxidized  with  OH  and  converted  to  peroxy  radicals.  These  peroxy  radicals  react  with  HO 2  or  NO,                  

resulting  in  non-volatile  ASOA  (HO 2  pathway,  ASOAN  species  in  GEOS-Chem)  or             

semi-volatile  ASOA  tracers  (NO  pathway,  ASOA1-3  in  GEOS-Chem).  As  is  the  case  for               

monoterpene  and  sesquiterpene  SOA  above,  GEOS-Chem  calculates  online  partitioning  and            

dry/wet  deposition  processes  for  semi-volatile  ASOA  tracers.  Other  conditions  including            

mortality   calculation   are   kept   the   same   as   the   base   simulation   above.   

  

2.6   Estimation   of   Premature   Mortality   Attribution   
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Premature  deaths  were  calculated  for  five  disease  categories:  ischemic  heart  disease             

(IHD),  stroke,  chronic  obstructive  pulmonary  disease  (COPD),  acute  lower  respiratory  illness             

(ALRI),  and  lung  cancer  (LC).  We  calculated  premature  mortality  for  the  population  aged  more                

than   30   years,   using    Eq. 4 .   

Eq. 4   

Mortality  rate,  y 0 ,  varies  according  to  the  particular  disease  category  and  geographic  region,               

which  is  available  from  Global  Burden  of  Disease  (GBD)  Study  2015  database   (IHME,  2016) .                

Population  (Pop)  was  obtained  from  Columbia  University  Center  for  International  Earth  Science              

Information  Network  (CIESIN)  for  2010   (CIESIN,  2017) .  Relative  risk,  RR,  can  be  calculated  as                

shown   in    Eq. 5 .   

Eq. 5   

α,  β,  and  ρ  values  depend  on  disease  category  and  are  calculated  from  Burnett  et  al.   (2014)  (see                   

Table S12  and  associated  file).  If  the  PM 2.5  concentrations  are  below  the  PM 2.5  threshold  value                

( Table S12 ),  premature  deaths  were  computed  as  zero.  However,  there  could  be  some  health               

impacts  at  concentrations  below  the  PM 2.5  threshold  values   (Krewski  et  al.,  2009) ;  following  the                

methods  of  the  GBD  studies,  these  can  be  viewed  as  lower  bounds  on  estimates  of  premature                  

deaths.     

We  performed  an  additional  sensitivity  analysis  using  the  Global  Exposure  Mortality             

Model  (GEMM)   (Burnett  et  al.,  2018) .  For  the  GEMM  analysis,  we  also  used  age  stratified                 

population  data  from  GWPv3.  Premature  death  is  calculated  the  same  as  shown  in   Eq. 4 ;                

however,  the  relative  risk  differs.  For  the  GEMM  model,  the  relative  risk  can  be  calculated  as                  

shown   in    Eq. 6 .   
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 Eq. 6   

Here   z   =  max (0,PM 2.5 ̠ PM 2.5,Threshold );  θ,  π,  ,  α,  and  PM 2.5,Threshold  depends  on  disease  category  and                 

are  from  Burnett  et  al.   (2018) .  Similar  to  the   Eq. 5 ,  if  the  concentrations  are  below  the  threshold                   

(2.4  µg  m -3 ,  Burnett  et  al.   (2018) ),  then  premature  deaths  are  computed  as  zero;  however,  the                  

GEMM   has   a   lower   threshold   than   the   GBD   method.   

For  GBD,  we  do  not  consider  age-specific  mortality  rates  or  risks.  For  GEMM,  we                

calculate  age-specific  health  impacts  with  age-specific  parameters  in  the  exposure  response             

function  ( Table S13 ).  We  combine  the  age-specific  results  of  the  exposure-response  function             

with  age  distributed  population  data  from  GPW   (CIESIN,  2017)  and  a  national  mortality  rate                

across   all   ages   to   assess   age-specific   mortality.   

We  calculated  total  premature  deaths  using  annual  average  total  PM 2.5  concentrations             

derived  from  satellite-based  estimates  at  the  resolution  of  0.1°×0.1°  from  van  Donkelaar  et  al.                

(2016)  .  Application  of  the  remote-sensing  based  PM 2.5  at  the  0.1°×0.1°  resolution  rather  than                

direct  use  of  the  GEOS-Chem  model  concentrations  at  the  2°×2.5°  resolution  helps  reduce               

uncertainties  in  the  quantification  of  PM 2.5  exposure  inherent  in  coarser  estimates   (Punger  and               

West,  2013) .  We  also  calculated  deaths  by  subtracting  from  this  amount  the  total  annual  average                 

ASOA  concentrations  derived  from  GEOS-Chem  ( Fig. S9 ).  To  reduce  uncertainties  related  to             

spatial  gradients  and  total  concentration  magnitudes  in  our  GEOS-Chem  simulations  of  PM 2.5 ,              

our  modeled  ASOA  was  calculated  as  the  fraction  of  ASOA  to  total  PM 2.5  in  GEOS-Chem,                 

multiplied   by   the   satellite-based   PM2.5   concentrations   ( Eq. 7 ).   

ASOA sat    =   (ASOA mod /PM 2.5,mod )   ×   PM 2.5,sat Eq. 7   
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Finally,  this  process  for  estimating  PM 2.5  health  impacts  considers  only  PM 2.5  mass  concentration               

and  does  not  distinguish  toxicity  by  composition,  consistent  with  the  current  US  EPA  position                

expressed   in   Sacks   et   al.    (2019) .   

  

3.   Observations   of   ASOA   Production   across   Three   Continents   

3.1   Observational   Constraints   of   ASOA   Production   across   Three   Continents     

Measurements  during  intensive  field  campaigns  in  large  urban  areas  better  constrain             

concentrations  and  atmospheric  formation  of  ASOA  because  the  scale  of  ASOA  enhancement  is               

large  compared  to  SOA  from  regional  background.  Generally,  ASOA  increased  with  the  amount               

of  urban  precursor  VOCs  and  with  atmospheric  PA   (de  Gouw  et  al.,  2005;  de  Gouw  and  Jimenez,                   

2009;  DeCarlo  et  al.,  2010;  Hayes  et  al.,  2013;  Nault  et  al.,  2018;  Schroder  et  al.,  2018;  Shah  et                     

al.,  2018) .  In  addition,  ASOA  correlates  strongly  with  gas-phase  secondary  photochemical             

species,  including  O x ,  HCHO,  and  PAN   (Herndon  et  al.,  2008;  Wood  et  al.,  2010;  Hayes  et  al.,                   

2013;  Zhang  et  al.,  2015;  Nault  et  al.,  2018;  Liao  et  al.,  2019)  ( Table S4 ;   Fig. S2  to   Fig. S4 ),                   

which   are   indicators   of   photochemical   processing   of   emissions.     

However,  as  initially  discussed  by  Nault  et  al.   (2018)  and  shown  in   Fig. 4 ,  there  is  large                  

variability  in  these  various  metrics  across  the  urban  areas  evaluated  here.  To  the  best  of  the                  

authors’  knowledge,  this  variability  has  not  been  explored  and  its  physical  meaning  has  not  been                

interpreted.  As  shown  in   Fig. 4 ,  though,  the  trends  in  ΔSOA/ΔCO  are  similar  to  the  trends  in  the                   

slopes  of  SOA  versus  O x ,  PAN,  or  HCHO.  For  example,  Seoul  is  the  highest  for  nearly  all                   

metrics,  and  is  approximately  a  factor  of  6  higher  than  the  urban  area,  Houston,  that  generally                  
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showed  the  lowest  photochemical  metrics.  This  suggests  that  the  variability  is  related  to  a                

physical   factor,   including   emissions   and   chemistry.   

The  VOC  concentration,  together  with  how  quickly  the  emitted  VOCs  react  (Σk i ×[VOC] i ,              

i.e.,  the  hydroxyl  radical,  or  OH,  reactivity  of  VOCs),  where  k  is  the  OH  rate  coefficient  for  each                    

VOC,  are  a  determining  parameter  for  ASOA  formation  over  urban  spatial  scales  ( Eq. 8 ).  ASOA                

formation  is  normalized  here  to  the  excess  CO  mixing  ratio  (ΔCO)  to  account  for  the  effects  of                   

meteorology,  dilution,  and  non-urban  background  levels,  and  allow  for  easier  comparison             

between   different   studies:     

Eq. 8   

where  Y  is  the  aerosol  yield  for  each  compound  (mass  of  SOA  formed  per  unit  mass  of  precursor                    

reacted),   and   [OH]×Δt   is   the   PA.     

BTEX  are  one  group  of  known  ASOA  precursors   (Gentner  et  al.,  2012;  Hayes  et  al.,                 

2013) ,  and  their  emission  ratio  (to  CO)  was  determined  for  all  campaigns  ( Table S5 ).  BTEX  can                 

thus  provide  insight  into  ASOA  production.   Fig. 5 a  shows  that  the  variation  in  ASOA  (at  PA  =                  

0.5  equivalent  days)  is  highly  correlated  with  the  emission  reactivity  ratio  of  BTEX  (R BTEX ,                

)  across  all  the  studies.  However,  BTEX  alone  cannot  account  for  much  of  the                

ASOA  formation  (see  budget  closure  discussion  below),  and  instead,  BTEX  may  be  better               

thought  of  as  both  partial  contributors  and  also  as  indicators  for  the  co-emission  of  other                 

(unmeasured)   organic   precursors   that   are   also   efficient   at   forming   ASOA.     

O x ,  PAN,  and  HCHO  are  produced  from  the  oxidation  of  a  much  wider  set  of  VOC                  

precursors  (including  small  alkenes,  which  do  not  appreciably  produce  SOA  when  oxidized).              
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These  alkenes  have  similar  reaction  rate  constants  with  OH  as  the  most  reactive  BTEX                

compounds  ( Table S11 );  however,  their  emissions  and  concentration  can  be  higher  than  BTEX              

( Table S7 ).  Thus,  alkenes  would  dominate  R Total ,  leading  to  O x ,  HCHO,  and  PAN  being  produced                

more  rapidly  than  ASOA  ( Fig. 5 b–d).  When  R BTEX  becomes  more  important  for  R Total ,  the  emitted                

VOCs  are  more  efficient  in  producing  ASOA.  Thus,  the  ratio  of  ASOA  to  gas-phase                

photochemical   products   shows   a   strong   correlation   with   R BTEX /R Total    ( Fig. 5 b–d).   

  

3.2  Budget  Closure  of  ASOA  for  4  Urban  Areas  on  3  Continents  Indicates  Reasonable                

Understanding   of   ASOA   Sources   

We  show  that  BTEX  alone  cannot  explain  the  observed  ASOA  budget  for  urban  areas                

around  the  world.   Fig. 6 a  shows  that  approximately  25±6%  of  the  observed  ASOA  originates               

from  the  photooxidation  of  BTEX.  Therefore,  other  precursors  must  account  for  most  of  the                

ASOA   produced.     

Because  alkanes,  alkenes,  and  oxygenated  compounds  with  carbon  numbers  less  than  6              

are  not  significant  ASOA  precursors,  we  focus  on  emissions  and  sources  of  BTEX,  other                

mono-aromatics,  IVOCs,  and  SVOCs.  These  three  classes  of  VOCs,  aromatics,  IVOCs,  and              

SVOCs,  have  been  suggested  to  be  significant  ASOA  precursors  in  urban  atmospheres              

(Robinson  et  al.,  2007;  Hayes  et  al.,  2015;  Ma  et  al.,  2017;  McDonald  et  al.,  2018;  Nault  et  al.,                     

2018;  Schroder  et  al.,  2018;  Shah  et  al.,  2018) ,  originating  from  both  fossil  fuel  and  VCP                  

emissions.   

Using  the  best  available  emission  inventories  from  cities  on  three  continents             

(EMEP/EEA,  2016;  McDonald  et  al.,  2018;  Li  et  al.,  2019)  and  observations,  we  quantify  the                 
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emissions  of  BTEX,  other  mono-aromatics,  IVOCs,  and  SVOCs  for  both  fossil  fuel  (e.g.,               

gasoline,  diesel,  kerosene,  etc.),  VCPs  (e.g.,  coatings,  inks,  adhesives,  personal  care  products,              

and  cleaning  agents),  and  cooking  sources  ( Fig. 2  and   Fig. 3 ).  This  builds  off  the  work  of                 

McDonald  et  al.   (2018)  for  urban  regions  on  three  different  continents.  Combining  these               

inventories  and  observations  for  the  various  locations  provide  the  following  insights  about  the               

potential  ASOA  precursors  not  easily  measured  or  quantified  in  urban  environments  (e.g.,   Zhao               

et  al.,  2014;  Lu  et  al.,  2018 ):  (1)  aromatics  from  fossil  fuel  accounts  for  14-40%  (mean  22%)  of                    

the  total  BTEX  and  IVOC  emissions  for  the  five  urban  areas  investigated  in-depth  ( Fig. 2 ),                

agreeing  with  prior  studies  that  have  shown  that  the  observed  ASOA  cannot  be  reconciled  by  the                  

observations  or  emission  inventory  of  aromatics  from  fossil  fuels  (e.g.,   Ensberg  et  al.,  2014;                

Hayes  et  al.,  2015 ).  (2)  BTEX  from  both  fossil  fuels  and  VCPs  account  for  25-95%  (mean  43%)                   

of  BTEX  and  IVOC  emissions  ( Fig. 2 ).  China  has  the  lowest  contribution  of  IVOCs,  potentially                

due  to  differences  in  chemical  make-up  of  the  solvents  used  daily   (Li  et  al.,  2019) ,  but  more                   

research  is  needed  to  investigate  the  differences  in  IVOCs:BTEX  from  Beijing  versus  US  and                

UK  emission  inventories.  Nonetheless,  this  shows  the  importance  of  IVOCs  for  both  emissions               

and  ASOA  precursors.  (3)  IVOCs  are  generally  equal  to,  if  not  greater  than,  the  emissions  of                  

BTEX  in  4  of  the  5  urban  areas  investigated  here  ( Fig. 2 ).  (4)  Overall,  VCPs  account  for  a  large                    

fraction  of  the  BTEX  and  IVOC  emissions  for  all  five  cities.  (5)  Finally,  SVOCs  account  for                  

27-88%  (mean  53%)  of  VOCs  generally  considered  ASOA  precursors  (VOCs  with  volatility              

saturation  concentrations  ≤  10 7  µg  m -3 )  ( Fig. 3 ).  Beijing  has  the  highest  contribution  of  SVOCs                

to  ASOA  precursors  due  to  the  use  of  solid  fuels  and  cooking  emissions   (Hu  et  al.,  2016) .  Also,                    

this  indicates  the  large  contribution  of  a  class  of  VOCs  difficult  to  measure   (Robinson  et  al.,                 
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2007)  that  are  an  important  ASOA  precursor  (e.g.,   Hayes  et  al.,  2015 ),  showing  further  emphasis                 

should   be   placed   in   quantifying   the   emissions   of   this   class   of   compounds.   

These  results  provide  an  ability  to  further  investigate  the  mass  balance  of  predicted  and                

observed  ASOA  for  these  urban  locations  ( Fig. 6 ).  The  inclusion  of  IVOCs,  other  aromatics  not                

including  BTEX,  and  SVOCs  leads  to  the  ability  to  explain,  on  average,  85±12%  of  the  observed                  

ASOA  for  these  urban  locations  around  the  world  ( Fig. 6 a).  Further,  VCP  contribution  to  ASOA                

is  important  for  all  these  urban  locations,  accounting  or,  on  average,  37±3%  of  the  observed                 

ASOA   ( Fig. 6 b).     

This  bottom-up  mass  budget  analysis  provides  important  insights  to  further  explain  the              

correlation  observed  in   Fig. 5 .  First,  IVOCs  are  generally  co-emitted  from  similar  sources  as               

BTEX  for  the  urban  areas  investigated  in-depth  ( Fig. 2 ).  The  oxidation  of  these  co-emitted               

species  leads  to  the  ASOA  production  observed  across  the  urban  areas  around  the  world.  Second,                 

S/IVOCs  generally  have  similar  rate  constants  as  toluene  and  xylenes  (≥1×10 -11  cm 3  molec. -1  s -1 )                

(Zhao  et  al.,  2014,  2017) ,  the  compounds  that  contribute  the  most  to  R BTEX ,  explaining  the  rapid                  

ASOA  production  that  has  been  observed  in  various  studies   (de  Gouw  and  Jimenez,  2009;                

DeCarlo  et  al.,  2010;  Hayes  et  al.,  2013;  Hu  et  al.,  2013,  2016;  Nault  et  al.,  2018;  Schroder  et  al.,                      

2018)  and  correlation  ( Fig. 5 ).  Finally,  the  contribution  of  VCPs  and  fossil  fuel  sources  to  ASOA                 

is  similar  across  the  cities,  expanding  upon  and  further  supporting  the  conclusion  of  McDonald                

et  al.   (2018)  in  the  importance  of  identifying  and  understanding  VCP  emissions  in  order  to                 

explain   ASOA.   

  

4.   Improved   Urban   SIMPLE   Model   Using   Multi-Cities   to   Constrain   
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4.1   Updates   to   the   SIMPLE   Model   

With  the  combination  of  the  new  dataset,  which  expands  across  urban  areas  on  three                

continents,  the  SIMPLE  parameterization  for  ASOA   (Hodzic  and  Jimenez,  2011)  is  updated  in               

the  standard  GEOS-Chem  model  to  reproduce  observed  ASOA  in   Fig. 5 a.  The  parameterization             

operates   as   represented   by    Eq. 9 .     

Eq. 9   

SOAP  represents  the  lumped  precursors  of  ASOA,  k  is  the  reaction  rate  coefficient  with  OH                 

(1.25×10 –11    cm 3    molecules –1    s –1 ),   and   [OH]   is   the   OH   concentration   in   molecules   cm –3 .     

SOAP  emissions  were  calculated  based  on  the  relationship  between  ∆SOA/∆CO  and             

R aromatics /∆CO  in   Fig. 5 a.  First,  we  calculated  R aromatics /∆CO  ( Eq. 10 )  for  each  grid  cell  and  time                

step   as   follows:   

Eq. 10   

Where  E  and  k  stand  for  the  emission  rate  and  reaction  rate  coefficient  with  OH,  respectively,  for                   

benzene  (B),  toluene  (T),  and  xylenes  (X).  Ethylbenzene  was  not  included  in  this  calculation                

because  its  emission  was  not  available  in  HTAPv2  emission  inventory.  However,  ethylbenzene              

contributed  a  minor  fraction  of  the  mixing  ratio  (~  7%,   Table S5 )  and  reactivity  (~6%)  of  the                  

total  BTEX  across  the  campaigns.  Reaction  rate  constants  used  in  this  study  were  1.22×10 –12 ,                

5.63×10 –12 ,  and  1.72×10 –11  cm 3  molec. –1  s –1  for  benzene,  toluene,  and  xylene,  respectively              

(Atkinson   and   Arey,   2003;   Atkinson   et   al.,   2006) .   
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Second,  E SOAP /E CO  can  be  obtained  from  the  result  of   Eq. 11 ,  using  slope  and  intercept  in                 

Fig. 5 a,  with  a  correction  factor  (F)  to  consider  additional  SOA  production  after  0.5  PA                

equivalent   days,   since    Fig. 5 a   shows   the   comparison   at   0.5   PA   equivalent   days.     

Eq. 11   

Where   slope   is   24.8   and   intercept   is   –1.7   from    Fig. 5 a.   F   ( Eq. 12 )   can   be   calculated   as   follows:   

Eq. 12   

F  was  calculated  as  1.8  by  using  [OH]  =  1.5  ×  10 6  molecules  cm –3 ,  which  was  used  in  the                     

definition   of   0.5   PA   equivalent   days   for    Fig. 5 a.     

Finally,  E SOAP  can  be  computed  by  multiplying  CO  emissions  (E CO )  for  every  grid  point                

and   time   step   in   GEOS-Chem   by   the   E SOAP /E CO    ratio.     

  

4.2   Results   of   Updated   SIMPLE   Model   

The  SIMPLE  model  was  originally  designed  and  tested  against  the  observations  collected              

around  Mexico  City   (Hodzic  and  Jimenez,  2011) .  It  was  then  tested  against  observations               

collected  in  Los  Angeles   (Hayes  et  al.,  2015;  Ma  et  al.,  2017) .  As  both  data  sets  have  nearly                    

identical  ΔSOA/ΔCO  and  R BTEX  ( Fig. 4  and   Fig. 5 ),  it  is  not  surprising  that  the  SIMPLE  model                

did  well  in  predicting  the  observed  ΔSOA/ΔCO  for  these  two  urban  regions  with  consistent                

parameters.  Though  the  SIMPLE  model  generally  performed  better  than  more  explicit  models,  it               

generally  had  lower  skill  in  predicting  the  observed  ASOA  in  urban  regions  outside  of  Mexico                 

City   and   Los   Angeles    (Shah   et   al.,   2019;   Pai   et   al.,   2020) .   
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This  may  stem  from  the  original  SIMPLE  model  with  constant  parameters  missing  the               

ability  to  change  the  amount  and  reactivity  of  the  emissions,  which  are  different  for  the  various                  

urban  regions,  versus  the  ASOA  precursors  being  emitted  proportionally  to  only  CO   (Hodzic  and                

Jimenez,  2011;  Hayes  et  al.,  2015) .  For  example,  in  the  HTAP  emissions  inventory,  the  CO                 

emissions  for  Seoul,  Los  Angeles,  and  Mexico  City  are  all  similar  ( Fig. S6 );  thus,  the  original                 

SIMPLE  model  would  suggest  similar  ΔSOA/ΔCO  for  all  three  urban  locations.  However,  as               

shown  in   Fig. 4  and   Fig. 5 ,  the  ΔSOA/ΔCO  is  different  by  nearly  a  factor  of  2.  The  inclusion  of                    

the  emissions  and  reactivity,  where  R BTEX  for  Seoul  is  approximately  a  factor  of  2.5  higher  than                  

Los  Angeles  and  Seoul,  into  the  improved  SIMPLE  model  better  accounts  for  the  variability  in                 

SOA  production,  as  shown  in   Fig. 5 .  Thus,  the  inclusion  and  use  of  this  improved  SIMPLE                 

model  refines  the  simplified  representation  of  ASOA  in  chemical  transport  models  and/or  box               

models.   

  

5.  Preliminary  Evaluation  of  Worldwide  Premature  Deaths  Due  to  ASOA  with  Updated              

SIMPLE   Parameterization   

The  improved  SIMPLE  parameterization  is  used  along  with  GEOS-Chem  to  provide  an              

accurate  estimation  of  ASOA  formation  in  urban  areas  worldwide  and  provide  an  ability  to                

obtain  realistic  simulations  of  ASOA  based  on  measurement  data.  We  use  this  model  to  quantify                 

the  attribution  of  PM 2.5  ASOA  to  premature  deaths.  Analysis  up  to  this  point  has  been  for  PM 1 ;                   

however,  both  the  chemical  transport  model  and  epidemiological  studies  utilize  PM 2.5 .  For              

ASOA,  this  will  not  impact  the  discussion  and  results  here  because  the  mass  of  OA  (typically                  

80–90%)  is  dominated  by  PM 1  (e.g.,   Bae  et  al.,  2006;  Seinfeld  and  Pandis,  2006 ),  and  ASOA  is                   

24   

https://doi.org/10.5194/acp-2020-914
Preprint. Discussion started: 11 November 2020
c© Author(s) 2020. CC BY 4.0 License.



543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

formed  mostly  through  condensation  of  oxidized  species,  which  favors  partitioning  onto  smaller              

particles    (Seinfeld   and   Pandis,   2006) .   

The  procedure  for  this  analysis  is  described  in   Fig. 7  and  Sect.  2.5  and  2.6.  Briefly,  we                  

combine  high-resolution  satellite-based  PM 2.5  estimates  (for  exposure)  and  a  chemical  transport             

model  (GEOS-Chem,  for  fractional  composition)  to  estimate  ASOA  concentrations  and  various             

sensitivity  analysis   (van  Donkelaar  et  al.,  2015) .  We  calculated  ~3.3  million  premature  deaths               

(using  the  Integrated  Exposure-Response,  IER,  function)  are  due  to  long-term  exposure  of              

ambient   PM 2.5    ( Fig. S7 ,    Table S14 ),   consistent   with   recent   literature    (Cohen   et   al.,   2017) .   

The  attribution  of  ASOA  PM 2.5  premature  deaths  can  be  calculated  one  of  two  ways:  (a)                 

marginal  method   (Silva  et  al.,  2016)  or  (b)  attributable  fraction  method   (Anenberg  et  al.,  2019) .                 

For  method  (a),  it  is  assumed  that  a  fraction  of  the  ASOA  is  removed,  keeping  the  rest  of  the                     

PM 2.5  components  approximately  constant,  and  the  change  in  deaths  is  calculated  from  the  deaths                

associated  with  the  total  concentration  less  the  deaths  calculated  using  the  reduced  total  PM 2.5                

concentrations.  For  method  (b),  the  health  impact  is  attributed  to  each  PM 2.5  component  by                

multiplying  the  total  deaths  by  the  fractional  contribution  of  each  component  to  total  PM 2.5 .  For                 

method  (a),  the  deaths  attributed  to  ASOA  are  ~340,000  people  per  year  ( Fig. 8 );  whereas,  for                 

method  (b),  the  deaths  are  ~370,000  people  per  year.  Both  of  these  are  based  on  the  IER  response                    

function    (Cohen   et   al.,   2017) .     

Additional  recent  work   (Burnett  et  al.,  2018)  has  suggested  less  reduction  in  the               

premature  deaths  versus  PM 2.5  concentration  relationship  at  higher  PM 2.5  concentrations,  and             

lower  concentration  limits  for  the  threshold  below  which  this  relationship  is  negligible,  both  of                

which  lead  to  much  higher  estimates  of  PM 2.5  associated  premature  deaths.  This  is  generally                
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termed  the  Global  Exposure  Mortality  Model  (GEMM).  Using  the  two  attribution  methods              

described  above  (a  and  b),  the  ASOA  PM 2.5  premature  deaths  are  estimated  to  be  ~640,000                 

(method   a)   and   ~900,000   (method   b)   ( Fig. S7    and    Fig. S10    and    Table S15 ).   

Compared  to  prior  studies  using  chemical  transport  models  to  estimate  premature  deaths              

associated  with  ASOA  (e.g.,   Silva  et  al.,  2016;  Ridley  et  al.,  2018 ),  which  assumed  non-volatile                 

POA  and  “traditional”  ASOA  precursors,  the  attribution  of  premature  mortality  due  to  ASOA  is                

over  an  order  of  magnitude  higher  in  this  study  ( Fig. 9 ).  This  occurs  using  either  the  IER  and                   

GEMM  approach  for  estimating  premature  mortality  ( Fig. 9 ).  For  regions  with  larger  populations              

and  more  PM 2.5  pollution,  the  attribution  is  between  a  factor  of  40  to  80  higher.  This  stems  from                    

the  non-volatile  POA  and  “traditional”  ASOA  precursors  over-estimating  POA  and            

under-estimating  ASOA  compared  to  observations   (Schroder  et  al.,  2018) .  These  offsetting             

errors  will  lead  to  model  predicted  total  OA  similar  to  observations   (Ridley  et  al.,  2018;  Schroder                  

et  al.,  2018) ,  yet  different  conclusions  on  whether  POA  versus  SOA  is  more  important  for                 

reducing  PM 2.5  associated  premature  mortality.  Using  a  model  constrained  to  atmospheric             

observations  ( Fig. 5  and   Fig. 6 ,  see  Sect.  4)  leads  to  a  more  accurate  estimation  of  the                 

contribution  of  ASOA  to  PM 2.5  associated  premature  mortality  that  has  not  been  possible  in  prior                 

studies.  We  note  that  ozone  concentrations  change  little  as  we  change  the  ASOA  simulation  (see                 

Sect.   S4   in   the   SI   and    Fig. S12 ).   

A  limitation  in  this  study  is  the  lack  of  sufficient  measurements  in  South  and  Southeast                 

Asia,  Eastern  Europe,  Africa,  and  South  America  ( Fig. 1 ),  though  these  areas  account  for  44%  of                 

the  predicted  reduction  in  premature  mortality  for  the  world  ( Table S14 ).  However,  as              

highlighted  in   Table S16 ,  these  regions  likely  still  consume  both  transportation  fuels  and  VCPs,               
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although  in  lower  per  capita  amounts  than  more  industrialized  countries.  This  consumption  is               

expected  to  lead  to  the  same  types  of  emissions  as  for  the  cities  studied  here,  though  more  field                    

measurements  are  needed  to  validate  global  inventories  of  VOCs  and  resulting  oxidation              

products  in  the  developing  world.  Transportation  emissions  of  VOCs  are  expected  to  be  more                

dominant  in  the  developing  world  due  to  higher  VOC  emission  factors  associated  with  inefficient                

combustion  engines,  such  as  two-stroke  scooters   (Platt  et  al.,  2014)  and  auto-rickshaws  (e.g.,               

Goel  and  Guttikunda,  2015 ).  Also,  unlike  many  of  the  cities  studied  here,  solid  fuels  are  used  for                   

residential  heating  and  cooking,  which  impact  the  outdoor  air  quality  as  well   (Hu  et  al.,  2013,                  

2016;  Lacey  et  al.,  2017;  Stewart  et  al.,  2020) ,  and  which  also  lead  to  SOA   (Heringa  et  al.,                    

2011) .  Recently,  emission  factors  from  Abidjan,  Côte  d’Ivoire,  a  developing  urban  area,  showed               

the  dominance  of  emissions  from  transportation  and  solid  fuel  burning,  with  BTEX  being  an                

important  fraction  of  the  total  emissions,  and  that  all  the  emissions  were  efficient  in  producing                 

ASOA   (Dominutti  et  al.,  2019) .  Further,  investigation  of  emissions  in  New  Delhi  region  of  India                 

demonstrated  the  importance  of  both  transportation  and  solid  fuel  emissions   (Stewart  et  al.,               

2020;  Wang  et  al.,  2020)  while  model  comparisons  with  observations  show  an  underestimation               

of  OA  compared  to  observations  due  to  a  combination  of  emissions  and  OA  representation   (Jena                 

et  al.,  2020) .  Despite  emission  source  differences,  SOA  is  still  an  important  component  of  PM 2.5                 

(e.g.,   Singh  et  al.,  2019 )  and  thus  will  impact  air  quality  and  premature  mortality  in  developing                  

regions.   Admittedly,   though,   our   estimates   will   be   less   accurate   for   these   regions.     

  

6.   Conclusions   
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In  summary,  ASOA  is  an  important,  though  inadequately  constrained  component  of  air              

pollution  in  megacities  and  urban  areas  around  the  world.  This  stems  from  the  complexity                

associated  with  the  numerous  precursor  emission  sources,  chemical  reactions,  and  oxidation             

products  that  lead  to  observed  ASOA  concentrations.  We  have  shown  here  that  the  variability  in                 

observed  ASOA  across  urban  areas  is  correlated  with  R BTEX ,  a  marker  for  the  co-emissions  of                 

IVOC  from  both  transportation  and  VCP  emissions.  Global  simulations  indicate  ASOA             

contributes  to  a  substantial  fraction  of  the  premature  mortality  associated  with  PM 2.5 .  Reductions               

of  the  ASOA  precursors  will  reduce  the  premature  deaths  associated  with  PM 2.5 ,  indicating  the                

importance  of  identifying  and  reducing  exposure  to  sources  of  ASOA.  These  sources  include               

emissions  that  are  both  traditional  (transportation)  as  well  as  non-traditional  emissions  of              

emerging  importance  (VCPs)  to  ambient  PM 2.5  concentrations  in  cities  around  the  world.  Further               

investigation  of  speciated  IVOCs  and  SVOCs  for  urban  areas  around  the  world  along  with  SOA                 

mass  concentration  and  other  photochemical  products  (e.g.,  O x ,  PAN,  and  HCHO)  for  other               

urban  areas,  especially  in  South  Asia,  throughout  Africa,  and  throughout  South  America,  would               

provide  further  constraints  to  improve  the  SIMPLE  model  and  our  understanding  of  the  emission                

sources   and   chemistry   that   leads   to   the   observed   SOA   and   its   impact   on   premature   mortality.      
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Figure 1 .  Non-refractory  submicron  aerosol  composition  measured  in  urban  and  urban  outflow             
regions  from  field  campaigns  used  in  this  study,  all  in  units  of  µg  m –3 ,  at  standard  temperature                   
(273  K)  and  pressure  (1013  hPa)  (sm –3 ).  See  Sect.  2  (GEOS-Chem  Section  and   Table 1 )  for                 
further  information  on  measurements,  studies,  and  apportionment  of  SOA  into  ASOA  and              
BSOA.     
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Figure 2 .  Comparison  of  BTEX  and  IVOC  sources  for  (a)  Beijing  (see  SI  section  about  Beijing                 
emission  inventory),  (b)  London  (see  SI  section  about  London/UK  emission  inventory),  and  (c)               
Los  Angeles,  (d)  Northeast  United  States,  and  (e)  New  York  City  (see  SI  section  about  United                  
States  for  (c)  –  (e)).  For  (a),  BTEX  is  on  the  left  axis  and  IVOC  is  on  the  right  axis,  due  to  the                         
small   emissions   per   day   for   IVOC.     
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Figure 3 .  Emission  ratio  versus  saturation  concentration  (log 10 (c*))  for  (a)  Los  Angeles,  (b)  NE               
US,  aircraft,  (c)  Beijing,  and  (d)  London.  The  emission  ratios  for  VOCs  (log 10 (c*)  ≥  7)  were                  
taken  from  de  Gouw  et  al.   (2017)  and  Ma  et  al.   (2017)  for  Los  Angeles,  Warneke  et  al.   (2007)  for                      
NE  US,  aircraft,  and  Wang  et  al.   (2014)  for  Beijing  while  the  VOC  emission  ratio  for  London  is                    
from   Table S6  to   Table S8 .  For  VOCs  between  log 10 (c*)  of  3  and  6  (IVOCs),  the  volatility                 
distribution  from  McDonald  et  al.   (2018) ,  along  with  the  ratio  of  IVOC  to  BTEX  from  Figure                  
SI-6  and  the  emission  ratio  of  BTEX  ( Table S6 ),  were  used  to  determine  the  emission  ratio                 
versus  saturation  concentration.  Finally,  for  VOCs  between  log 10 (c*)  0  and  2  (SVOCs),  the               
volatility  distributions  from  Robinson  et  al.   (2007)  for  non-fossil  fuel  POA  and  from  Worton  et                 
al.   (2014)  for  fossil  fuel  POA  were  used  to  convert  the  normalized  POA  mass  concentration                 
( Table S9 )  to  VOC  emission  ratios.  Note,  the  emission  ratio  versus  saturation  concentration  for               
New  York  City,  2015,  was  similar  to  (b),  as  the  emissions  were  similar  ( Fig. 2 )  and  the  BTEX  for                    
New   York   City   is   the   same   as   NE   US   ( Table S5 ).     
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Figure 4 .  (a)  A  comparison  of  the  ΔSOA/ΔCO  for  the  urban  campaigns  on  three  continents.                
Comparison  of  (b)  SOA/Ox,  (c)  SOA/HCHO,  and  (d)  SOA/PAN  slopes  for  the  urban  areas                
( Table S4 ).   For   (b)   through   (d),   cities   marked   with   *   have   no   HCHO,   PAN,   or   hydrocarbon   data.    
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Figure 5 .  (a)  Scatter  plot  of  background  and  dilution  corrected  ASOA  concentrations             
(ΔASOA/ΔCO  at  PA  =  0.5  equivalent  days)  versus  BTEX  emission  reactivity  ratio  (R BTEX =             

)  for  multiple  major  field  campaigns  on  three  continents.  Comparison  of  ASOA              
versus  (b)  Ox,  (c)  PAN,  and  (d)  HCHO  slopes  versus  the  ratio  of  the  BTEX/Total  emission                  
reactivity,  where  total  is  the  OH  reactivity  for  the  emissions  of  BTEX  +  C¬2-3  alkenes  +  C2-6                   
alkanes  ( Table S5  through   Table S7 ),  for  the  campaigns  studied  here.  For  all  figures,  red  shading                
is   the   ±1σ   uncertainty   of   the   slope,   and   the   bars   are   ±1σ   uncertainty   of   the   data   (see   Sect.   2.2).     
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Figure 6 .  (a)  Budget  analysis  for  the  contribution  of  the  observed  ΔSOA/R BTEX  ( Fig. 5 )  for  cities                
with  known  emissions  inventories  for  different  volatility  classes  (see  SI  and   Fig. 2  and   Fig. 3 ).                
(b)  Same  as  (a),  but  for  sources  of  emissions.  For  (a)  and  (b),  SVOC  is  the  contribution  from                    
both  vehicle  and  other  (cooking,  etc.)  sources.  See  Sect.  2  and  SI  for  information  about  the                  
emissions,  ASOA  precursor  contribution,  error  analysis,  and  discussion  about  sensitivity  of             
emission   inventory   IVOC/BTEX   ratios   for   different   cities   and   years   in   the   US.     
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Figure 7 .  Flowchart  describing  how  observed  ASOA  production  was  used  to  calculate  ASOA  in               
GEOS-Chem,  and  how  the  satellite-based  PM 2.5  estimates  and  GEOS-Chem  PM 2.5  speciation  was              
used  to  estimate  the  premature  mortality  and  attribution  of  premature  mortality  by  ASOA.  See                
Sect.  2  for  further  information  about  the  details  in  the  figure.  SIMPLE  is  described  in   Eq. 9  and                   
by  Hodzic  and  Jimenez   (2011)  and  Hayes  et  al.   (2015) .  The  one  of  two  methods  mentioned                  
include  either  the  Integrated  Exposure-Response  (IER)   (Burnett  et  al.,  2014)  with  Global  Burden               
of  Disease  (GBD)  dataset   (IHME,  2016)  or  the  new  Global  Exposure  Mortality  Model  (GEMM)                
(Burnett  et  al.,  2018)  methods.  For  both  IER  and  GEMM,  the  marginal  method   (Silva  et  al.,                  
2016)    or   attributable   fraction   method    (Anenberg   et   al.,   2019)    are   used.      
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Figure 8 .  Five-year  average  (a)  estimated  reduction  in  PM 2.5 -associated  premature  deaths,  by             
country,  upon  removing  ASOA  from  total  PM 2.5 ,  and  (b)  fractional  reduction  (reduction  PM 2.5               
premature  deaths  /  total  PM 2.5  premature  deaths)  in  PM 2.5 -associated  premature  deaths,  by              
country,  upon  removing  ASOA  from  GEOS-Chem.  The  IER  methods  are  used  here.  See   Fig. S7                
and   Fig. S10  for  results  using  GEMM.  See   Fig. S8  for  10×10  km 2  area  results  in  comparison                 
with   country-level   results.     
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Figure 9 .  Attribution  of  premature  mortality  to  ASOA  using  (a)  IER  or  (b)  GEMM,  using  the                 
non-volatile  primary  OA  and  traditional  SOA  precursors  method  in  prior  studies  (e.g.,   Ridley  et                
al.,  2018 ).  The  increase  in  attribution  of  premature  mortality  to  ASOA  for  the  “SIMPLE”  model                 
( Fig. 8 )  versus  the  non-volatile  primary  OA  and  traditional  SOA  precursor  method  (“Default”),              
for   (c)   IER   and   (d)   GEMM.     
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Table 1 .  List  of  campaigns  used  here.  For  values  previously  reported  for  those  campaigns,  they                
are   noted.   For   Seasons,   W   =   Winter,   Sp   =   Spring,   and   Su   =   Summer.    

Location   Field   
Campaign   

Coordinates   
Time   Period   Season   

Previous   
Publication/Campaig 

n   Overview   Long.   (°)   Lat.   (°)   

Houston,   TX,   
USA   (2000)   

TexAQS   
2000   −95.4   29.8   15/Aug/2000   -   

15/Sept/2000   Su   Jimenez   et   al.    (2009) a ,   
Wood   et   al.    (2010) b   

Northeast   USA   
(2002)   

NEAQS   
2002   

−78.1   -   
−70.5   32.8   -   43.1   

26/July/2002;   
29/July/2002   -   
10/Aug/2002   

Su   

Jimenez   et   al.    (2009) a ,   
de   Gouw   and   Jimenez   
(2009) c ,   Kleinman   et   
al.    (2007) c   

Mexico   City,   
Mexico   (2003)   

MCMA-200 
3   −99.2   19.5   31/Mar/2003   -   

04/May/2003   Sp   Molina   et   al.    (2007) ,   
Herndon   et   al.    (2008) b   

Tokyo,   Japan   
(2004)     139.7   35.7   24/July/2004   -   

14/Aug/2004   Su   

Kondo   et   al.    (2008) a ,   
Miyakawa   et   al.   
(2008) a ,   Morino   et   al.   
(2014) b   

Mexico   City,   
Mexico   (2006)   MILAGRO   −99.4   -   

−98.6   19.0   −   19.8   04/Mar/2006   -   
29/Mar/2006   Sp   

Molina   et   al.    (2010) ,   
DeCarlo   et   al.    (2008) a ,   
Wood   et   al.    (2010) b ,   
DeCarlo   et   al.    (2010) c   

Paris,   France   
(2009)   MEGAPOLI   48.9   2.4   13/July/2009   -   

29/July/2009   Su   Freney   et   al.    (2014) a ,   
Zhang   et   al.    (2015) b   

Pasadena,   CA,   
USA   (2010)   CalNex   −118.1   34.1   15/May/2010   -   

16/June/2010   Sp   Ryerson   et   al.    (2013) ,   
Hayes   et   al.    (2013) a,b,c   

Changdao   
Island,   China   
(2011)   

CAPTAIN   120.7   38.0   21/Mar/2011   -   
24/Apr/2011   Sp   Hu   et   al.    (2013) a,c   

Beijing,   China   
(2011)   

CareBeijing   
2011   116.4   39.9   03/Aug/2011   -   

15/Sept/2011   Su   Hu   et   al.    (2016) a,b,c   

London,   UK   
(2012)   ClearfLo   0.1   51.5   22/July/2012   -   

18/Aug/2012   Su   Bohnenstengel   et   al.   
(2015)   

Houston,   TX,   
USA   (2013)   SEAC 4 RS   −96.0   -   

−94.0   29.2   -   30.3   01/Aug/2013   -   
23/Sept/2013   Su   Toon   et   al.    (2016)   

New   York   City,   
NY,   USA   
(2015)   

WINTER   −74.0   -   
−69.0   39.5   -   42.5   07/Feb/2015   W   Schroder   et   al.   

(2018) a,c   

Seoul,   South   
Korea   (2016)   KORUS-AQ   124.6   -   

128.0   36.8   -   37.6   01/May/2016   -   
10/June/2016   Sp   Nault   et   al.    (2018) a,b,c,d   

a Reference   used   for   PM 1    composition.    b Reference   used   for   SOA/O x    slope.    c Reference   used   for   
ΔOA/ΔCO   value.    d Reference   used   for   SOA/HCHO   and   SOA/PAN   slopes     
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