DOI QR코드

DOI QR Code

Effects of Dietary Ginger and Scutellaria Dry Powder on Antioxidant Capacity and IgG Concentration in Colostrum and Plasma of Sows

모돈에 대한 생강 및 황금 분말 급여가 초유와 혈청의 항산화력과 IgG 농도에 미치는 영향

  • Lee, Sung-Dae (Dairy Science Division, National Institute of Animal Science, RDA) ;
  • Jung, Hyun-Jung (Dairy Science Division, National Institute of Animal Science, RDA) ;
  • Kim, In-Cheul (Dairy Science Division, National Institute of Animal Science, RDA) ;
  • Park, Jun-Cheol (Dairy Science Division, National Institute of Animal Science, RDA) ;
  • Kim, Sang-Bum (Dairy Science Division, National Institute of Animal Science, RDA) ;
  • Cho, Sung-Back (Dairy Science Division, National Institute of Animal Science, RDA) ;
  • Song, Young-Min (Dept. of Animal Resources Technology, Jinju National University)
  • 이성대 (농촌진흥청 국립축산과학원) ;
  • 정현정 (농촌진흥청 국립축산과학원) ;
  • 김인철 (농촌진흥청 국립축산과학원) ;
  • 박준철 (농촌진흥청 국립축산과학원) ;
  • 김상범 (농촌진흥청 국립축산과학원) ;
  • 조성백 (농촌진흥청 국립축산과학원) ;
  • 송영민 (국립진주산업대학교 동물소재공학과)
  • Received : 2010.05.06
  • Accepted : 2010.10.15
  • Published : 2010.10.31

Abstract

The objective of this study was to investigate the effects of dietary ginger and Scutellaria on antioxidant capacity and IgG concentration in plasma and colostrum of sows. Twenty-four sows (Landrace $\times$ Yorkshire) in parity 2 were assigned to 3 treatment groups (8 sows per treatment) from 30 day before farrowing up to weaning on day 21 after farrowing. The treatment diets included 1) CON (Basal diet), 2) GDP (0.3% ginger dry powder was used as the replacement of wheat in basal diet) and 3) SDP (0.3% Scutellaria dry powder was used as the replacement of wheat in basal diet). No differences were found in antioxidant capacity and IgG concentration in plasma of sows among all the three treatments. Antioxidant capacity in colostrum was not affected by replacement of ginger and Scutellaria dry powder. IgG and protein concentration in colostrum was significantly higher (P<0.05) in GDP than that in CON and SDP. However, fat and lactose concentration were not affected by treatments. The total amino acid concentration in colostrum was significantly higher (P<0.05) in GDP than that in CON and SDP. Plasma antioxidant capacity was not affected by treatments in piglet on 0 day and 21 day, but tended to increase by supplementation of ginger. On 0 day, plasma IgG in piglet was not detected by replacement of ginger and Scutellaria dry powder. However, plasma IgG concentration in piglets on 21 day was significantly higher (P<0.05) in GDP than that in CON and SDP. These results indicate that colostrum IgG concentration in sows and plasma IgG concentration in piglets were improved by feeding ginger dry powder 30 days before farrowing in comparison to basal diet.

본 연구에서는 생강과 황금 건조 분말의 급여가 모돈의 유질과 자돈의 면역력에 미치는 영향을 구명하고자 수행하였다. 공시동물은 2산차 F1 임신모돈 24두를 이용하였다. 시험사료는 대조구(CON) 사료에 생강건조분말(GDP)과 황금건조분말(SDP)를 0.3 % 대체하여 분만 전 30일부터 이유 21일까지 시험사료를 급여하였다. 모돈 혈청에서 항산화력과 IgG는 처리구간에 유의적인 차이를 나타내지 않았다. 초유에서 항산화력은 처리구가 대조구보다 높은 수치를 나타내었지만, 처리구간의 유의적 차이를 나타내지 않았다. 초유의 IgG 함량은 GDP구가 다른 처리구에 비해 유의적으로 높게 나타났다(P<0.05). 초유의 유성분 함량에서, 단백질 함량은 GDP구가 다른 처리구에 비해 유의적으로 높게 함유하였다 (P<0.05). 지방과 유당 함량은 처리구간에 유의적 차이를 나타내지 않았다. 초유의 아미노산 조성은 SDP구가 다른 처리구에 비해 각각의 아미노산 함량이 유의적으로 높게 나타났다. 0일령과 21일령에서 자돈 혈청의 항산화력은 처리구간에 유의적 차이를 나타내지 않았지만, 다른 구에 비해 GDP구가 높은 함량을 유지하였다. IgG 함량은 0일령에서는 측정되지 않았고, 21일령에서는 GDP구가 다른 구에 비해 유의적으로 높은 함량을 나타내었다(P<0.05). 이상의 결과로, 생강 건조분말은 초유의 IgG 함량과 자돈 혈청 IgG 함량을 개선시키는 효과가 확인되어 모돈 사료의 유질개선용으로 활용이 가능할 것으로 판단된다.

Keywords

References

  1. Aeschbach, R., Loliger, J., Scott, B. C., Murcia, A., Butler, J., Halliwell, B. and Aruoma, O. I. 1994. The antioxidant actions of thymol, carvacrol, 6-gingerol, zingerone and hydroxytyrosol. Food. Chem. Toxicol. 32:31-36. https://doi.org/10.1016/0278-6915(84)90033-4
  2. Afshari, A. T., Shirpoor, A., Farshid, A., Saadatian, R., Rasmi, Y., Saboory, E., Ilkhanizadeh, B. and Allameh, A. 2007. The effect of ginger on diabetic nephropathy, plasma antioxidnt capacity and lipid peroxidation in rats. Food Chem. 101:148-153. https://doi.org/10.1016/j.foodchem.2006.01.013
  3. Akers, R. M. 2002. Lactation and the mammary gland. Iowa State Press, Blackwell Publishing Company, Iowa. U.S.A., pp:96-99.
  4. Antipatis, C., Rooke, J. A., Ewen, M. and Ashworth, C. J. 2001. Both moderate vitamin A deficiency during pregnancy and birth-weight affect piglet immunity. Proc. Nutr. Soc. 60:72A.
  5. Blecha, F., Pollmann, D. S. and Kluber, E. F. 1986. Decreased mononuclear cell response to mitogenes in artificially reared neonatal pigs. Can. J. Vet. Res. 50:522-525.
  6. Blecha, F., Pollmann, D. S. and Nichols, D. A. 1983. Weaning pigs at an early age decreases cellular immunity. J. Anim. Sci. 56:309-400.
  7. Chrubasik, S., Pittler, M. H. and Roufogalis, B. D. 2005. Zingiberis rhizoma: A comprehenzive review on the ginger effect and efficacy profiles. Phytomed. 12:684-701. https://doi.org/10.1016/j.phymed.2004.07.009
  8. Dugenci, S. K., Arda, N. and Candan, A. 2003. Some medicinal plants as immunostimulant for fish. J. Ethnopharmacol. 88:99-106. https://doi.org/10.1016/S0378-8741(03)00182-X
  9. Fuhrman, B., Rosenblat, M., Hayea, T., Coleman, R. and Aviram, M. 2000. Ginger extract consumption reduces plasma cholesterol. inhibits LDL oxidation and attenuates development of atherosclerosis in atherosclerotic, apolipo-protein E-deficient mice. J. Nutr. 130:1124-1131.
  10. Goransson, L. 1990. The effect on late pregnancy feed allowance on the composition of the sow’s colostrum and milk. Acta Vet. Scand. 31:109-115.
  11. Hendrix, W. F., Kelley, K. W., Gaskins, C. T. and Hinrich, D. J. 1976. Porcine neonatal survival and serum gamma globulins. J. Anim. Sci. 47:1281-1286.
  12. Heo, H. J., Kim, D. O., Choi, S. J., Shin, D. H. and Lee, C. Y. 2004. Potent inhibitory effect of flavonoids in Scutellaria baicalensis on amyloid beta protein-induced neurotoxicity. J. Agric. Food Chem. 52:4128-4132. https://doi.org/10.1021/jf049953x
  13. Kim, H. M., Moon, E. J., Li, E., Kim, K. M., Nam, S. Y. and Chung, C. K. 1999. The nitric oxide-producing activities of Scutellaria baicalensis. Toxicol. 135:109-115. https://doi.org/10.1016/S0300-483X(99)00047-5
  14. Ko, B. S., Joo, H. J., Ma, J. Y., Park, K. J. and Ahn, S. W. 1996. Studies on availability of components in extract of Scutellariae Radix by boiling water method. Kor. J. Ori. Med. 2:496-505.
  15. Konoshima, T., Kokumai, M., Kozuka, M., Linuma, M., Mizuno, M., Tanaka, T., Tokuda, H., Nishino, H. and Iwashima, A. 1992. Studies on inhibitors of skin tumor promotion. XI. Inhibitor effects of flavonoids from Scutellaria baicalensis on Epstein-Barr virus activation and their anti-tumor-promoting activities. Chem. Pharm. Bull. 40:531-533. https://doi.org/10.1248/cpb.40.531
  16. Koo, L. K., Ammit, A. J., Tran, V. H., Duke, C. C. and Roufogalis, U. 2001. Gingerols and related analogues inhibit arachidonic acid-induced human platelet serotonin release and aggregation. Thrombosis Res. 103:387-397. https://doi.org/10.1016/S0049-3848(01)00338-3
  17. Krakowski, L., Krzyżanowski, J. and Wrona, Z. 1998. Changes within particular parameters of nonspecific immunity in piglets in the post-natal period. Medycyna Wet. 54:750-752.
  18. Krakowski, L., Krzyzanowski, J., Wrona, Z., Kostro, K. and Siwicki, A. K. 2002. The influence of nonspecific immunostimulation of pregnant sows on the immunological value of colostrum. Vet. Immunol. Immunopathol. 87:89-95. https://doi.org/10.1016/S0165-2427(02)00004-1
  19. Kubo, M., Kimura, Y., Odani, T., Tani, T. and Namba, K. 1981. Studies on Scutellariae radix. Part II. The antibacterial substance. Planta Medica. 43:194-201. https://doi.org/10.1055/s-2007-971499
  20. Mahmood, N., Pizza, C., Aquino, R., De Tommasi, N., Piacente, S., Colman, S., Burke, A. and Hay, A. J. 1993. Inhibition of HIV infection by flavanoids. Antiviral Res. 22:189-199. https://doi.org/10.1016/0166-3542(93)90095-Z
  21. Micklefield, G. H., Redeker, Y., Meister, V., Jung, O., Greving, I. and May, B. 1999. Effects of ginger on gastroduodenal motility. Int. J. Clin. Pharmacol. Ther. 37:341-346.
  22. National Research Council (NRC). 1998. Nutrient requirements of swine, 10th edition. National Academy Press, Washington, DC. U.S.A.
  23. Pinelli, S. A., Scaife, J. R., Calderon de la Barca, A. M., Valenzuela, J. R. and Celaya, H. 2001. Effect of supplementation with vitamin E and vitamin C on immune response of sows and their litters in hot environments. Proc. Nutr. Soc. 60:25A.
  24. Platel, K. and Srinivasan, K. 2000. Influence of dietary spices and their active principles on pancreatic digestive enzymes in albino rats. Nahrung. 44:42-46. https://doi.org/10.1002/(SICI)1521-3803(20000101)44:1<42::AID-FOOD42>3.0.CO;2-D
  25. Razina, T. G., Udintsev, S. N., Tiutrin, I. I., Borovskaia, T. G. and Iaremenko, K. V. 1989. The role of thrombocyte aggregation function in the mechanism of the antimetastatic action of an extract of Baikal skullcap. Voprosy Onkologii. 35:331-335.
  26. Rooke, J. A. and Bland, I. M. 2002. The acquisition of passive immunity in the new-born piglet. Livest. Prod. Sci. 78:13-23. https://doi.org/10.1016/S0301-6226(02)00182-3
  27. Sekiwa, Y., Kubota, K. and Kobayashi, A. 2000. Isolation of novel glucosides related to gingerdiol from ginger and their antioxidative activities. J. Agric. Food Chem. 48:373-377. https://doi.org/10.1021/jf990674x
  28. Sordillo, L. M. 2005. Factors affecting mammary gland immunity and mastitis susceptibility. Livest. Prod. Sci. 98:89-99. https://doi.org/10.1016/j.livprodsci.2005.10.017
  29. Statistical Analysis System (SAS). 1995. SAS/STAT user's guide, 11th edition. Version 6. SAS Institute, Cary, NC.
  30. Tuchscherer, M., Puppe, B., Tuchscherer, A. and Tiemann, U. 2000. Early identification of neonates at risk: traits of newborn piglets with respect to survival. Theriogenology. 54:371-388. https://doi.org/10.1016/S0093-691X(00)00355-1
  31. Zhang, Y., Wang, X., Wang, X., Xu, Z., Liu, Z., Ni, Q., Chu, X., Qiu, M., Zhao, A. and Jia, W. 2006. Protective effect of flavonoids from Scutellaria baicalensis Georgi on cerebral ischemia injury. J. Ethnopharmacol. 108:355-360. https://doi.org/10.1016/j.jep.2006.05.022