
International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume XI, Issue V, May 2022|ISSN 2278-2540

www.rsisinternational.org Page 29

No Re-entrancy Guard: A novel approach for

mitigating all types of Re-entrancy bugs and

evaluating its efficiency
Susmit Sandeep Patil

1
, Zaheed Shamsuddin Shaikh

2

1
M Tech Student, Department of Computer Engineering, KJSCE, Ghatkopar East, Mumbai, India

2
Assistant Professor, Department of Computer Engineering, KJSCE, Ghatkopar East, Mumbai, India

Abstract: Blockchain applications are powered by smart

contracts which perform crypto exchanges according to the

policies set by developers. These transactions are free-of-conflict

and transparent. Though at the end of day these are all computer

programs which means they are not immune from bugs. In this

paper We focus on most common and deadly vulnerability called

re-entrancy, which has caused numerous DAO and DeFi attacks

costing millions to organizations and end-users alike. We have

researched all sub-types of re-entrancies and hence proposed a

novel solution to mitigate them all by ensuring all state changes

happen before calling external smart contracts and using

function modifiers to apply mutual exclusion lock like protocol to

prevent it. Moreover, we have also compared my solution with

that of other solutions been proposed on scale of their gas cost

efficiency.

Index Terms: Blockchain, Decentralized market, Smart contracts,

Re-entrancy, Mutual exclusion lock.

I. INTRODUCTION

he past decade has seen tremendous strides of

development in blockchain sector. According to

estimates, it is bound to grow by 85.9 percent annually. Smart

Contracts are building blocks of blockchain applications they

are basically programs written in solidity to create a type of

policy to govern day-to-day workings of those applications.

User can invoke specific contracts functions by sending

transactions over blockchain using internal payments system

know as Gas. These transactions include exchange of

cryptocurrency for performing real-world transactions.

Generally, these provide a safe mode of transactions but still

they are being exposed to certain vulnerabilities. There is a

potential threat to monetary and intellectual assets of

application it targets. We have focused on most common but

not so easy to resolve bug call re-entrancy attack. We have

discussed in this paper various types of re-entrnacies and their

respective detrimental effect on applications of various use-

cases like that of infamous DAO and also certain recent

attacks on DeFi applications as well. Then further we have

presented a novel solution for addressing each of these attacks.

Additionally, we have displayed the gas cost efficiency of all

the methods proposed by previous researchers.

II. BLOCKCHAIN BACKGROUND KNOWLEDGE

 This section contains some background knowledge about

common terms used in blockchain and also throughout this

research paper:

 1) Smart Contract: A smart contract is a transaction

protocol which is intended to automatically execute, control or

document legally relevant events and actions according to

terms of a contract or an agreement.

 2) Re-entrancy: A smart contract vulnerability which

occurs when a function makes an external call to another

untrusted contract and then in-turn that untrusted contract

makes a call back to the original function in an attempt to

drain funds(in our case ethers).

 3) Mutual exclusion lock: A protocol used to ensure that

at any given time only trusted thread of function is able to

access/modify the information stored.

 4) Function modifiers: They are used to modify behavior

of a function. First to create a modifier with or without

parameters, the body of function is inserted with „_;‟ in the

definition of function.

 5) Fallback functions: The fallback functions are an

integral part of solidity protocol. When none of the function

whose name exists is triggered by some external function call,

the contract cannot receive ethers. This condition throws an

exception. Only if a fallback exists are such functions been

executed.

III. EXISTING SYSTEMS AND THEIR LIMITATIONS

 In blockchain ecosystem, to mitigate such vulnerabilities

numerous authors have been successful in detecting as well as

preventing re-entrancy. Through my extensive research We

came to know that though the methods used were successful in

mitigating the issue there were more scalability issues due to

higher gas costs and also the methods were only applicable

during development and testing phase.

 In the RA: Hunting for re-entrancy attacks in ethereum

smart contract via static analysis by Yuchiro and Naoto they

have used tool RA a static analysis providing inter-contract

T

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume XI, Issue V, May 2022|ISSN 2278-2540

www.rsisinternational.org Page 30

analysis of reverse engineered EVM Bytecode to detect smart

contract vulnerabilities. Re-entrancy is one such bug they have

tested upon. Though it fails when many-to-many external

contract calls are made in fraction of seconds i.e it‟s not

scalable.[2]

 In ReGuard: finding re-entrant bugs in smart contracts

Chao and Han Liu have proposed a dynamic analyser which

leverages fuzzing based techniques to generate random and

diverse conditions for it to detect bugs with lesser number of

false positives and negative detections, though it‟s mostly used

for complex contracts with limited attack scenarios.[1]

 In mechanism to detect re-entrancy in smart contracts

Alex Ng and Paul Watters have proposed solution based on

continuos comparison between total and contract balances of

all participants throughout it‟s execution. Though it‟s not so

resilient towards novel attack patterns and contracts which are

been already deployed.[3]

 In re-entrancy vulnerability identification in ethereum

smart contracts Naoma and Manar have proposed a

combination of dynamic and static analyser framework,

though it does not base itself by superior standards set by

ReGuard Tool.[4]

 In Towards automated re-entrancy detection for smart

contracts based on sequential models Roger and Xun have

applied deep learning techniques to identify anomalous

patterns, though BLSTM-ATT incurs and FPR(false positive

rates) of 8.75%.[5]

 In contract Fuzzer: fuzzing the smart contracts for

vulnerability detection Bo, Ye and W.K Chan have covered

wide variety of detecting re-entrancies, though they have not

done so for all the sub-types of re-entrancies.[6]

 In sereum: protecting existing contracts from re-entrnacy

authors Michael and Lucas have discussed various types of re-

entranacies and their preventive methodologies.[7]

 In evaluating upgradeable smart contracts Van and Sheng

have discussed a comprehensive data-proxy pattern to isolate

the external calls, though in-order to apply to any system they

have proposed further work on it. As in exisiting systems they

observed a considerable scalability and gas cost issues.[8]

 In Solidity check checking bugs in smart contract through

regular expressions authors Pencheng and Feng have proposed

a regular expression and programmatic instrumentations to

detect bugs in smart contracts, though it have very low

accuracy rate and cannot even re-iterate/Feedback the detected

information which is pretty useless if we consider already

deployed contracts.[9]

 In smartcheck: static analysis of ethereum smart contracts

authors Sergei, Ramil, Yaroslav and Ivan have converted

solidity source contract code to pure xml representations and

have checked it again with XPath patterns found in re-

entrancy bugs, though it fails todo any taint analysis or even

manual edits which during annual EIPs of solidity are standard

essential practices.[10]

 Also some prevention systems are built some of them are

discussed below:

a) Checks-Effects interactions: The checks in beginning

of code ensure that calling entity is in position to call

the specific external function. Only after that

specified effects are applied and state variables are

been updated.

b) Nuclear option: Any time we send ether i.e transfer

funds to untrusted address or interact with unknown

contract(such as calling transfer) of a user-provided

token address, we open ourself to vulnerabilities, to

mitigate such situation we design contracts that

neither send ether nor call untrusted contracts, though

it will severly decrease transparency of contract and

will further encourage 3
rd

 party associations.

c) Pullpayment: A stratergy where paying contract

doesn‟t interact directly with the receiver account,

which must withdraw it‟s payments itself. They are

considered best practise security wise and transfer of

funds. They also prevent receipeints from blocking

executions and mitigates risks of re-entrancies.

d) Pausable: Pausable is a module in solidity used via

concept of inheritance. Once the modifier functions

are put in place they allow children contracts to

implement an emergency stop mechanism that can be

triggered by an authorized account.

IV. TYPES OF RE-ENTRANCY ATTACKS

In this section, we discuss various types of re-entrancies.

a) Single function re-entrancy: This type of attack is

simplest and easiest to prevent. It occurs when the

vulnerable function is same function the attacker is

trying to recursively call.[7]

b) Cross-function attack: These attacks are harder to

detect, it‟s only possible when a vulnerable function

shares state with another function that has a desirable

effect for the attacker.[7]

c) Delegated re-entrancy attack: This form of attack

hides vulnerabilities within a DELEGATECALL or

CALLCODE instructions. These EVM instructions

allow contract to invoke function of another contract

in context of an external call.[7]

d) Create-Based re-entrancy: It is similar to delegated

attack. It basically created a new contract and it‟s

constructor function using NEW keyword in EVM

instructions. This new contract is a trusted one, hence

new contract can call external malicious contract

using it‟s newly minted constructor function. This

allows attacker to re-enter the victim contract and

exploit the inconsistent state. [7]

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume XI, Issue V, May 2022|ISSN 2278-2540

www.rsisinternational.org Page 31

V. IMPLEMENTATION AND RESULTS

 We have implemented four conditional smart contracts.

They are programmed with a particular vulnerability in mind.

These open smart contracts have all sub-types of re-entrancy

bugs. We have uploaded all smart contract on my github

profile for reference purpose

https://github.com/psusmit/Mitigate_re-entrancy, they help in

understanding how each vulnerability can be present in

different types of situations. Furthermore, we have also

uploaded an attacker‟s contract to hit victim contracts with re-

entrancies and also uploaded the proposed solution them. Let‟s

discuss them in brief:

a) Simple Dao: This contract works pretty much as the

DAO which got infamously hacked. It has a state

inconsistency and single attacker contract which re-

enters the victim contract and sweeps all the funds. This

has single-function re-entrancy bug.

Fig 1- Simple DAO‟s attacker contract

Here, we see that Mallory is an external contract used to set

address to original DAO contract.

Fig 2- Simple DAO‟s smart contract in solidity

In simple DAO contract we donate funds and query to address

which has those funds. Also we have withdraw function where

bug is present to send funds from DAO contract to attacker

contract.

Fig 3- Single function attack success

b) Token Exchange Protocol: In token exchange there are

multiple users at play. Basically what this smart contract

does is exchange ether funds with their respectively

priced Tokens. Here as the utility requires multiple states

to be maintained detecting and preventing a re-entry

becomes complex.

Fig 4- Token smart contract

This contract keeps track of multiple users. A user can send

ether to this contract and exchange ether funds for token and

also vice versa.

Fig 5- Various crypto-exchange functions in token protocol smart contract

This contract supports various utility functions for

transferring, exchaning ether and tokens. Note that this

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume XI, Issue V, May 2022|ISSN 2278-2540

www.rsisinternational.org Page 32

probably makes it hard for algorithms built to mitigate risks to

detect and prevent re-entries.

Fig 6- Vulnerable function

This function is abused by attacker during his re-

entrancy attack phase.

Fig 7- Token‟s attacker smart contract

This is attacker contract which exchages nearly all toekn

amount deposited in last transaction. And also withdrawall

function will be called at moment where states are not updated

properly.

Fig 8- cross-function attack success

c) Dynamic safesending: This contract has built in dynamic

library called SafeSending, which performs simple an

external call leading to the problem of delegated re-entry.

Fig 9- Safesending library

d) This contract has safesending dynamic library which

misuses the the unsafe CALL behind delegatecall bug, though

in more realistic scenario a more complex and safe call will be

made.

Fig 10- Banking smart contract

Instead of sending transfer,call or send instruction a transfer

instruction without proper assessment is passed to library

contract, which handles sending of ether. This in turn updates

the state after DELEGATECALL instruction is made.

Fig 11- Delegated attacker‟s smart contract

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume XI, Issue V, May 2022|ISSN 2278-2540

www.rsisinternational.org Page 33

This attacker contract is pretty vicious as it extract 2x the

amount deposited by victim and stops the execution right at

second re-entrancy to avoid raising the out-of-gas error.

Fig 12- Delegated attack success

e) Untrusted Intermediary: This is similar to delegate call

just it used CALL instructions and an intermediary

constructor to make a malicious external call.

Fig 13- Untrusted Intermediary smart contract

f) This contract holds funds untill owner decides to

withdraw. While, the constructor registers itself with new

owner and calls him i.e attacker. Now this instruction passes

to an untrusted 3
rd

 party.

Fig 14- Banking intermediary smart contract

NEW keyword is used to call new contract, which

immediately runs it‟s contructor which is seen as an external

call to another contract. Even though the contract can be

“trusted” then too it can perform problematic executions in the

future. Ie. Updation of state after CREATE instruction‟s been

called.

Fig 15- Intermediary Attacker‟s smart contract

This is the attacker function which deposits some ethers and

then withdraws it again. Then it calls for new intermediary

contract, which is holding the funds until we retrieve it. This

unfortunately triggers registery intermediary which drains the

funds. Now note that already the contract has been

underflowed with cash and thus attacker will see a huge rise in

it‟s own funds.

Fig 16- Registery function to store values

This is registerIntermediary function which sweeps the

balance on malicious 3
rd

 party calls, and also it stops at second

loop to prevent out-of-gas error and obsfuscate the “natural”

state updation instructions of smart contracts.

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume XI, Issue V, May 2022|ISSN 2278-2540

www.rsisinternational.org Page 34

Fig 17- Create-based attack success

g) NoRe-entrancyGuard on simple function re-entrnacy: We

observed in each of the attacks that the issue of re-entrnacy

state updations was that another external contract was been

maliciously called by attacker contract and some executions

(basically illegally re-entrering) systems were been performed.

Instead of focusing on control flow graph of a contract‟s

execution cycle, which most of other research is based on, We

concentrated on the illegal executions while hijacking a

resource aspect of it. We realised that it was a classical case of

Deadlock. Whereby the contracts functions were not mutually

exclusive. So we tried a mutual exclusion lock on smart

contract and it was successful. Below is the image

representing the successful implementation

Fig 18- NoRe-entrant mutual exclusion protocol

The above contract checks for lock during executing a smart

contract if none is present then it first halts the execution adds

a lock then carries on it‟s execution. Although it does not halt

the executions if already a lock is present.

Our novel solution can be applied to simple function re-

entrancy bug. The simple DAO contract has a withdraw()

function which basically sends ether to external malicious

contract, by applying our lock and switching the order of

update and external call in it.

Fig 19- Attack prevented by our solution

When attacker tries to exploit our re-entrancy and re-enter the

contract to flush funds a lock is implemented which throws

him an error of “failed to send ether”. The lock is un-locked

only when the final state is updated till that time no transfer()

function occurs.This also generated very little downtime for

other users.

f)Pullpayment protocol on cross-function re-entrancy:

Pullpayment protocol can be applied to cross function

vulnerability. Our second attack contract of token exchange

has multiple states to be maintained. Pullpayments uses an

escrow contract to deposit all of ethers to it‟s own contract

before transfering it to other contracts. Hence, even if an

attacker to make re-entrancy detection more complicated used

multiple function having recursive loops to dis-maintain states

and then flush out ethers in confusion our pullpayment

protocol before transfering it to attacker can keep funds in

escrow contract update the states and then only authorizes

fund transfers otherwise it cannot be done. Also we can use

our No re-entrnacy lock protocol in conjecture with

pullpayments to avoid further writes from happening to

contract before previous states are been properly maintained.

Fig 20- Pullpayment protocol

The above skeleton represents how an escrow contract is

created and a constructor function deposits funds before

finally transfering it to main destination.

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume XI, Issue V, May 2022|ISSN 2278-2540

www.rsisinternational.org Page 35

Fig 21- Cross function attack failed due to pullpayment protocol

g) Check-Effects on Delegated re-entrnacy:This protocol is

used in third attack pattern called dynamic safesending having

a delegated re-entrnacy. It basically reduces the attack surface

area of malicious contract trying to hijack control flow after an

external call such as (CALLCODE / DELEGATECALL)is

made. For this reason a detection algorith to find out the lines

of code vulnerable to attack must be known beforehand. Then

it used require() method to check the correctness of the state

and for effects the lines identifed are adjusted for user balance.

And make sure all transfer() operations happen in last line to

avoid re-entrancy.

Fig 22- Checks-effects skeleton

The above skeleton will check the effects of detected delegate

calls and will adjust the balance of our contract and place

transfer operation on last line.

Fig 23- Delegated re-entrancy detected and failed

h) Nuclear option:- For the fourth attack of create-based re-

entrancy we did an extensive study and found no detection

method suitable to detect this type of bug. Only an expert

develeoper having knowledge of such attack can detect it. To

prevent it we have nuclear method which is highly resource

intensive. In create-based attack the attacker creates a different

intermediary contract and fools the main contract by attacking

it‟s EVM deployment behavior rather than attacking it‟s

contract logic which is done by other three mentioned bugs.

We have applied require(tx.origin==msg.sender) function to

detect third intermediary contract created by attacker and

refused to transfer any funds if such pattern occurs. An

attacker can also hijack contract‟s process before it‟s

contructor function can even deploy it to an address. Thus

nuclear option applies tx.origin snippet to avoid such

malicious contracts. Furthermore it‟s essential for this method

to have a “whitelist of trusted contracts” to work which means

maintaing a huge database which means additonal cost to

maintain it and less scalability.

Fig 24- New keyword creates intermediate contract

Fig 25- Calls the intermediate contract having funds.

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume XI, Issue V, May 2022|ISSN 2278-2540

www.rsisinternational.org Page 36

Fig 26- Attacker contract calls the intermediate contracts to transfer funds to
attacker.

The factor to consider while building any new solutions and

incorporating them into existing systems is scalability and

cost. In our case of crypto-exchanges scalability is directly

dependent upon cost i.e the transaction gas fees. Hence, we

have calculated the gas fees of each of the preventative

method mentioned thus far on all of the sub-types of re-

entrancies.

Fig 27- A comparative study of solutions on all sub-types of re-

entrancies.

The above provided graph feature cost converted to

INR(indian rupee) from ethereum on y-axis and subtypes of

all re-entrancy attack patterns on x-axis. Legends for each

preventative method is provided above the graph. Looking at

the graph, we notice some blank spaces that is because other

researchers have not tested their models on delegate and

create-based re-entrancy vulnerabilities. From the bar chart

above we observe that for single function bug, nuclear option

works best and our solution does moderatly good. Then from

Simple DAO bug, checks-effects solution works best whileas

our method has moderalty higher cost. From cross-function

bug we notice that again nuclear option does better than others

and our solution is just slighlty better than others. But

noticeable effect of our solution is on delegated and create-

based though there are no references from appropriate

comparison we get to know that our method does an abyssmal

job.

VII. CONCLUSION AND FUTURE RESEARCH

 With the recent announcement of metaverse by facebook,

blockchain technologies have seen an exponential boom in

marketplace. Though this has come with it‟s own set of

challenges. Recent examples of hacks on DAO and DeFi has

shown us that the systems are not as secure as they seem to be.

We have thus focused on re-entrancy bug in smart contracts

and tried mitigating it. We have explored more sub-types of

re-entrancies and have carried out attack on them. But our

proposed solution has made the system completely resilient to

such sub-attacks. Though my solution was found wanting in

gas efficiency.

 The results of my research have prompted more potential

future studies in enhancing the issue of gas cost efficiency. As

the gas costs for my proposed solution is just moderately

better, hence we need to strive for better results still and an

end-user should not face the issue of extra gas fees as he is

already paying for our services. Therefore, the industry and

academia need to co-operate and invest in future research to

help with these issues.

ACKNOWLEDGMENT

 All authors listed have made a substantial, direct, and

intellectual contribution to the work and have approved it for

publication.

REFERENCES

[1] C. Liu, H. Liu, Z. Cao, Z. Chen, B. Chen and B. Roscoe,

"ReGuard: Finding Reentrancy Bugs in Smart Contracts," 2018
IEEE/ACM 40th International Conference on Software

Engineering: Companion (ICSE-Companion), 2018, pp. 65-68.

[2] Y. Chinen, N. Yanai, J. P. Cruz and S. Okamura, "RA: Hunting for
Re-Entrancy Attacks in Ethereum Smart Contracts via Static

Analysis," 2020 IEEE International Conference on Blockchain

(Blockchain), 2020, pp. 327-336, doi:
10.1109/Blockchain50366.2020.00048.

[3] Alkhalifah A, Ng A, Watters PA and Kayes ASM (2021) A

Mechanism to Detect and Prevent Ethereum Blockchain Smart
Contract Reentrancy Attacks. Front. Comput. Sci. 3:598780. doi:

10.3389/fcomp.2021.598780.

[4] N. Fatima Samreen and M. H. Alalfi, "Reentrancy Vulnerability
Identification in Ethereum Smart Contracts," 2020 IEEE

International Workshop on Blockchain Oriented Software
Engineering (IWBOSE), 2020, pp. 22-29, doi:

10.1109/IWBOSE50093.2020.9050260.

[5] P. Qian, Z. Liu, Q. He, R. Zimmermann and X. Wang, "Towards

Automated Reentrancy Detection for Smart Contracts Based on

Sequential Models," in IEEE Access, vol. 8, pp. 19685-19695,

2020, doi: 10.1109/ACCESS.2020.2969429.
[6] B. Jiang, Y. Liu and W. K. Chan, "ContractFuzzer: Fuzzing Smart

Contracts for Vulnerability Detection," 2018 33rd IEEE/ACM

International Conference on Automated Software Engineering
(ASE), 2018, pp. 259-269, doi: 10.1145/3238147.3238177.

[7] Sereum: Protecting Existing Smart Contracts Against Re-Entrancy

Attacks Rodler, M., Li, W., Karame, G. O., & Davi, L. (2018).
Sereum: Protecting existing smart contracts against reentrancy

attacks. arXiv preprint arXiv:1812.05934.

[8] V. C. Bui, S. Wen, J. Yu, X. Xia, M. S. Haghighweand Y. Xiang,
"Evaluating Upgradable Smart Contract," 2021 IEEE International

Conference on Blockchain (Blockchain), 2021, pp. 252-256, doi:

10.1109/Blockchain53845.2021.00041.

International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS)

Volume XI, Issue V, May 2022|ISSN 2278-2540

www.rsisinternational.org Page 37

[9] Zhang, P., Xiao, F., & Luo, X. (2019). Soliditycheck: Quickly

detecting smart contract problems through regular

expressions. arXiv preprint arXiv:1911.09425.
[10] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev, E.

Marchenko and Y. Alexandrov, "SmartCheck: Static Analysis of

Ethereum Smart Contracts," 2018 IEEE/ACM 1st International
Workshop on Emerging Trends in Software Engineering for

Blockchain (WETSEB), 2018, pp. 9-16.

[11] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. 2017. A
Survey of Attacks on Ethereum Smart Contracts (SoK). In

International Conference on Principles of Security and Trust.

Springer, 164–186.
[12] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric

Fournet, Anitha Gol�lamudi, Georges Gonthier, Nadim Kobeissi,

A Rastogi, T Sibut-Pinote, N Swamy, and S Zanella-Beguelin.
2016. Formal verification of smart contracts. In Pro�ceedings of

the 2016 ACM Workshop on Programming Languages and

Analysis for Security-PLAS‟16. 91–96.

[13] E. Hildenbrandt, M. Saxena, N. Rodrigues, X. Zhu, P. Daian, D.

Guth, B. Moore, D. Park, Y. Zhang, A. Stefanescu et al., “Kevm:
A complete formal semantics of the ethereum virtual machine,” in

Proc. of CSF 2018. IEEE, 2018, pp. 204–217.

[14] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Buenzli,
and M. Vechev, “Securify: Practical security analysis of smart

contracts,” in Proc. of CCS 2018. ACM, 2018, pp. 67–82.

[15] Dika, A., and Nowostawski, M. (2018). “Security vulnerabilities in
Ethereum smart contracts,”in The institute of electrical and

electronics engineers, Inc.(IEEE) conference proceedings, Halifax,

NS, July 30–August 3, 2018 (IEEE), 955–962.
[16] Hung, C., Chen, K., and Liao, C. (2019).“Modularizing cross-

cutting concerns with aspect-oriented extensions for solidity,” in

The institute of electrical and electronics engineers, Inc.(IEEE)
conference proceedings, Newark, CA, April 4–9, 2019 (IEEE),

176–181.

