
©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 25

35

 A Fast Algorithm for Finding the Non Dominated Set
in Multi objective Optimization

K.K.Mishra and Sandeep Harit
MNNIT,Allahabad,India

INTRODUCTION:
The working of single objective optimization algorithm and

multi objective optimization algorithm is quite different.

This difference is due to number of optimal solution

approached by both the algorithms. In single objective

optimization problem there will be a single optimal

solution, even though in multi model optimization there

may be more than one solution but we are interested in only

one optimal solution, where as in multi objective

optimization problem, there will be many set of optimal

solutions. These sets are called different non dominated

front, and every non dominated front will contain a set of

non dominated solutions thus there are two tasks of an ideal

multi objective optimization algorithm (i) To find multiple

non dominated fronts (or to identify different set of non

dominated solutions). (ii) To seek for Pareto optimal

solutions with a good diversity in objective and decision

variable values.

 In this paper, we explain a new algorithm for finding non

dominated set of a multi objective optimization problem.

In literature many algorithms are used for this task like

naïve and slow method [2], fast and efficient method [3]

and Kung et al method [7]. Recently two new algorithms

are proposed by Ding [4] and Jun Du[1].The worst case

time complexity of all algorithm(including recently

proposed algorithm) is (OM(N)2),Previously Kung’s

algorithm was best in its average and best case time

complexity but Jun du in 2007 proved that his algorithm is

best in comparison of kung’s algorithm. While we were

unable to reduce worst case time complexity, The best case

time complexity of proposed algorithm is O(NLog(N))(for

any number of objective functions)which is a improvement

as compared to othere algorithms. Also it follows a simple

approach, no hectic summation and production method.

The paper is organized into four sections. Section 2

presents some background detail of Different Preexisting

Algorithms and specifies the necessary definition related to

non dominated set. Section 3 describes the proposed

approach and stepwise algorithm also difference between

Kung’s algorithm and proposed algorithm is presented; In

Section 4, an experimental analysis and complexity of the

proposed algorithm are presented. Finally, Section 5

concludes the paper.

2.BACKGROUND

2.1Dominance and Pareto-Optimality
Most multi-objective optimization algorithms use the

concept of dominance in their search. Here, we define the

concept of dominance and related terms and present a

number of techniques for identifying dominated solutions

in a finite population of solutions. Definition of dominated

points and non-dominated set are given below

Definition 1: A solution x(1) is said to dominate the other

solution x(2), if both conditions 1 and 2 are true:

1. The solution x(1) is no worse than x(2) in all

objectives, or fj(x
(1)) fj(x

(2)) for all j = 1,2…M.

2. The solution x(1) is strictly better than x(2) in at

least one objective, or fj(x
(1)) fj(x

(2)) for at least

one j∈{ 1,2…M.}.

Definition 2: (Non-dominated set): Among a set of

solutions P, the non-dominated set of solutions P’ are those

that are not dominated by any member of the set P

2.2. Review of some standard algorithms
Before discussing the proposed algorithm, let us review

some preexisting algorithms.

2.2.1Kung’s Algorithm:
Kung algorithm is the most efficient and widely used one.

In this approach we have to first sort the population in

decending order in accordance to first objective function.

Thereafter, the population is recursively halved as top(T)

and bottom(B) subpopulations. As Top half (T) is better in

objective in comparison to Bottom half (B) in first

objective ,so we check the bottom half for domination with

top half .The solution of B which are not dominated by

solutions of T are merged with members of T to form

merged population M.The complete algorithm is given

below:

Step 1: Sort the population according the descending order

of importance in the first objective function and

rename the population as P of size N.

Step 2 :Front(P): if |P| =1, return P as the output of

Front(P).Otherwise, T= Front(P(1) - P(|P/2|)) and B=

Front(P(|P|/2+1) - P(P)). IF ith non –dominated solution B is not

dominated by any non-dominated solution of T, create a

merged set M=T U i. Return M as output of Front(P).

2.2.2Sorting based algorithm (Jun Du

Algorithm):
This algorithm is given in two steps as follows:

Step 1: the population of solutions is sorted according to

the descending order to every objective functions.

Thereafter, several solutions sequences could be presented

and each of them corresponds to one objective. Every

solution could be scored according to the position it takes,

higher score it gains. Then, each solution could get various

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 25

36

scores corresponding to various objectives. Take the scores

summation of every solution, and sort it to get one new

solution summation sequence. The new summation

sequence could be used for finding non dominated set by

deleting all the dominated solution inside.

Step 2: The bottom of the summation sequence is used as

the start of the compared solution, while the top of the

summation sequence is used as the start of the comparing

one. Once the compared solution is observed by any one

anterior to it, it is deleted. When the compared solution

becomes the top one of the sequence, the dominated set is

drawn out.

2.2.3Ding’s algorithm: Based on the definitions of

indices, rank set and propositions given in paper 4, the

following procedure is used by Ding which identifies the

non dominated solutions. Interested reader may refer

paper[4] for further study.

Algorithm Identifying the Non-dominated Set: MLNFC.

Input: X.

Output:The non-dominated set —X0 of X

(R0 store the non-dominate set of rank set R).

Using quick-sort method to create indices I1; I2; :::; IM

and

rank set R;

Initiate R0 with I1(1)0s, I2(1)0s, ..., IM(1)0s, eliminate

duplicate ones;

for(i = 1; i·N; i++) Set r(i) not checked;

stop = N;// Set initial termination position N;

for(i=2;i·stop;i++)f

//Search at the ith entries of the indices;

for(j=1;j·M;j++)f//Search at the ith entry of index Ij ;

if(Ij(i)0s not checked)f

Compare it with the non-dominated ones among

Ij(1)0s; Ij(2)0s; :::; Ij(i ¡ 1)0s and set it checked;

if(Ij(i)0s is not dominated by any of them)f

put it in R0;

i0 =max of its ranks(or components);

stop=minfstop, i0g;//Update termination position;

}

}

}

}

3. PROPOSED ALGORITHM: The proposed

approach is very different from existing algorithms. In

existing algorithms, we are able to classify solutions only

after finding all dominated solutions. So to find non

dominated solutions, we need to search entire set

repeatedly. In proposed algorithm, we store only non

dominated solutions. We perform a few comparisons to

classify a point in to either dominated set or non dominated

set. We first sort population according to the descending

order of importance to the first objective value. In this way

the solutions which are good in first objective will come

first, in the list those having bad value will come in last.

We initialize a set S1, for keeping non dominated solutions

only. We start with the first solution and add this solution

to non dominated set S1. Since first point is best in terms of

first objective so no point can dominate this point in first

objective, so it will be non dominated. Now we compare

every other solution of the list with this set S1 and update

this set when we find another non dominated solution and

skip on those solutions which are dominated by any

element of the set. For example if solutions in the list are

unique in first objective function value, then for second

point we need only one comparison to decide whether this

is dominated or non dominated. The reason can be

explained as follows, this solution can be dominated by

only first solution (which is best in first objective).it can

not be dominated by other solutions because its value for

first objective function is greater than all solutions except

first. Similarly for the third solution we need at most two

comparisons from fist and second point. And for the last

point of list we need to compare this solution to all non

dominated solutions. If solutions in list are not unique in

first objective function value, then we have to make certain

modification in proposed algorithm. Like we have to check

every solution to its immediate successors, if any

immediate solution dominates this solution then we have to

remove this point from the non dominated set S1.Finally

we display the non dominated solutions.

3.1Step by step procedure for the

proposed algorithm
The proposed algorithm can be executed using the

following steps.

1. Sort all the solutions (P1…PN) in decreasing

order of their first objective function (F1) and

create a sorted list (O)

2. Initialize a set S1 and add first element of list O

to S1

3. For every solution Oi (other than first solution)

of list O, compare solution Oi from the solutions

of S1

i. If any element of set S1 dominate Oi,

Delete Oi from the list

ii. If Oi dominate any solution of the set

S1, Delete that solution from S1

iii. If Oi is non dominated to set S1, Then

update set S1 = S1 U Oi

iv. If set S1 becomes empty add immediate

solution at immediate solution to S1

4. Print non dominated set S1

3.2 How Proposed Algorithm is Different

from Kung’s Algorithm:
In First look the working of proposed algorithm resembles

with Classic Kung’s algorithm but it is quite different from

Kung’s algorithm. This difference is due to deleting

procedure of both the algorithm. In Kung’s algorithm a

recursive approach was used to delete the dominated points

from the set, this approach gives no weight age to the

knowledge that is earned by sorting the solutions according

to their first objective. Let us make it clear, when we sort

the solutions according to their first objective. The

solutions which have a good probability to dominate other

solutions will come on the beginning of the list. This can be

understand by the definition of dominated point, If a point

dominate other point it has to be good in all objectives so it

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 25

37

will be defiantly good in first objective. That is what we are

doing when we apply sorting to the list. So it would be

better if we start deleting points from the front end of the

sorted list. In this way, we will not waste our time in

making unnecessary comparisons as was done in Kung’s

algorithm. In our algorithm we give proper weight age to

the knowledge earned by sorting and our deleting

procedure start with the front end of the list. Let as take a

example that will differentiate between our algorithm and

Kung’s algorithm. Let we have some solutions in which

only one solution dominate all other solutions. Since this

solution is better than all solutions when we apply sorting it

will come at the starting of the list. When we apply both the

algorithms Kung’s and Proposed algorithm on the sorted

list of this problem, then for this case time complexity of

our algorithm will be O(nlongn) where as The complexity

of Kung’s Algorithm will be O(n2).So our algorithm will

always work faster than Kung’s algorithm.

3.3Detail of Algorithm:
To make the algorithm clear, consider the example taken

from Jun Du’s paper, we illustrate the working of above

steps on this example. First, let’s take out an MOO example

with 10 solutions and 4 objectives. The following Table 1

presents the 4 objective function values (O1-O4) for 10

solutions (P1-P10).

Table 1: Objective Function Values

Obj.

Func.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

O1 0.94 0.35 0.76 0.88 0.39 0.86 0.27 0.91 0.73 0.53

O2 2934 3599 2780 1998 3476 3331 2597 2318 3273 4055

O3 5.3 6.6 5.4 8.0 8.7 7.9 9.1 2.1 4.9 7.7

O4 289 45 23 598 444 99 188 239 177 328

According to the step 1 of the algorithm, we first sort

solutions in descending order of their first objective

function value therefore sorted list will contain {P1, P8, P4,

P6, P3, P9, P10, P5, P2, P7}. We take first solution of this

list and add this solution to set S1.Now, we initialize a set

S1 and put the first element P1 of the list to the set S1. Next

we compare second solution P8 from set S1, as P1

dominate P8 so discard this solution and go for third

solution P4. As the set S1 contains only one solution P1, so

we need only one comparison to decide the category of P4.

As P1 is non dominated to P4, so we update the initial set

and now set S1 contains two solutions (P1, P4). We have to

make two comparisons for P6, this solution is non

dominated to both the solutions so we update the set S1 to

(P1, P4, P6). For P3, we check its dominance with the set

(P1, P4, P6), it is dominated by P6, so we discard this

point. Similarly for other solutions we can repeat the same

process

4.EXPERIMENTAL RESULTS AND

COMPLEXITY ANALYSIS:
To find a non-dominated set of a multi objective

optimization problem, Comparison of Jun du’s algorithm

and proposed algorithm are performed on a computer with

Intel core™2 1.60G Hz CPU and 1GB memory. Running

time of the algorithms is taken as the criterion to evaluate

the efficiency. Various objectives number and solutions

number are set for test.

The objective function values are generated randomly. To

remove experimental error, comparisons are performed

more than once. Tables 1 and 2 contain the experiments

results, where M is objective number, N is population size

and Q is the size of non dominated set. From the table, it is

clear that our algorithm is more efficient than Jun du,s

algorithm.

Table1: Running time analysis of Jun du and proposed algorithm for Four Objective Functions

M (No. of

Objective

Functions)

N (Population

Size)

Running Time Q (No. of Non

dominated

Solutions)
Jun du’s

Algorithm

Proposed

Algorithm

4

5000

885.4940 204.3920 737

871.2670 183.0970 675

443.1880 97.6710 737

 1463.5 317.5350 956

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 25

38

4 10000 1313.2 305.8380 916

1353.1 308.8800 918

4

20000

3543.3 1010.5 1304

3674.7 1017.7 1317

3724.5 1026.2 1354

4

50000

9029.1

5583.5

1872

Table 2: Running time analysis of Jun du and proposed algorithm for Seven Objective Functions

M (No. of

Objective

Functions)

N (Population

Size)

Running Time Q (No. of Non

dominated

Solutions)
Jun du’s

Algorithm

Proposed

Algorithm

7

5000

1035.5 223.5940 4263

1011.4 209.0090 675

1027.6 209.9300 697

7

10000

3427.7 1001.6 918

3546.3 1010.7 917

3619.1 1026.2 926

Table3: Running time analysis of Jun du and proposed algorithm for Ten Objective Functions

4.1Complexity analysis

(i) The best case complexity of the proposed

algorithm will be O(NLogN) this can be

calculated as follows.

In step 1 the time taken by quick sort will be NLogN

per List. For the best case the number of solutions in

set S1 will be one, so in total N(one for each solution)

comparisons will be required to find the non

dominated set. This condition occurs when all non

dominated fronts contain only one solution.

(ii) The worst case complexity of the

proposed algorithm will be O(M(N)2) this

can be calculated as follows.

In step 1 the time taken by quick sort will be NLogN

per List. For this case there will be no dominated

solution in the list. So to check non dominance of a

solution, all solutions of S1 is to be checked.

5. CONCLUSION:
The algorithm proposed in this paper could find non-

dominated set efficiently by two steps: sorting step and

deleting step. The time complexity analysis shows that this

algorithm is better than any other algorithm in its best case

analysis. Also in average case its complexity is same as of

Kung’s algorithm which has better complexity in

comparison of other traditional algorithm.The idea can be

extended to provide non dominated sorting of the

population.

M (No. of

Objective

Functions)

N (Population

Size)

Running Time Q (No. of Non

dominated

Solutions)
Jun du’s

Algorithm

Proposed

Algorithm

10

5000

813.9270 185.3600 1118

792.1040 198.5720 1106

811.4530 187.4750 1126

10

10000

9167.1 2667.9 1567

9475.7 2654.1 1585

20497.0 4664.3 2131

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 25

39

 REFERENCES:
[1]. Jun Du, Zhihua Cai and Yunliang Chen,” A

Sorting Based Algorithm for Finding Non-

Dominated Set in Multi-Objective Optimization”
Third International Conference on Natural

Computation (ICNC 2007)

[2] K. Deb, “Multi-objective Optimization Using

Evolutionary Algorithms,” JOHN

WILEY&SONS, LTD, 2001 pp.33-43, 2000.

[3]. K. Deb, S. Agrawal, A. Pratap, and T.

Meyarivan. Afast elitist non-dominated sorting

genetic algorithm for multi-objectv e

optimization: NSGA-II. In Proceeding of the 6th

International Conference on Parallel Problem

Solving from Nature, Pages 849-858, 2000.

[4]. L. Ding. S.Zeng. and L. Kang, “A fast algorithm

on finding the non-dominated set in multi-

objectve optimization.”, In Proceedings of

International Conference on Evolutionary

Computation, pages 2565-2571, 2003

[5] A. Freitas,” A critical review of multi-objective

optimization in data mining: a position paper.

“,SIGKDD Explorations, 6(2): 77-86, 2004.

[6] J. Knowles and D. Corne,”Reducing local optima

in single-objective problems by

multiobjectivization”, In Proceedings of the 1st

International Conference on Evolutionary Multi-

Criterion Optimization, pages 269-283, 2001.

[7] H. Kung. F. Luccio, and F. Preparata,”On finding

the maxima of a set of vectors.”, Journal of the

Association Computing Machinery, 22(4) : 469-

476, 1975.

[8] E. Zitzler, M. Laumanns, and L. Thiele,”Spea2:

Improving the strength Pareto evolutionary

algorithm for multiobjective optimization.”, In

Proceedings of the Evolutionary Methods for

Design, Optimization, and Control, 19-26,

Barcelona, Spain, 2002.

[9]. C. Fonseca, M. and P. J. Fleming ” Genetic

algorithms for multiobjective optimization:

Formulation, discussion and generalization,” In

S. Forrest (Ed.), Proceedings of the Fifth

International Conference on Genetic Algorithms,

San Mateo, California, pp. 416C423. Morgan

Kaufmann. , 2003

[10]. J. Horn, and N. Nafpliotis ” Multiobjective

optimization using the niched Pareto genetic algorithm,”

IlliGAL Report 93005, Illinois Genetic Algorithms

Laboratory, University of Illinois, Urbana,

Champaign.,1993

[11]. J. Horn, N. Nafpliotis, and D. E. Goldberg” A

niched Pareto genetic algorithm for

multiobjective optimization,” In Proceedings of

the First IEEE Conference on Evolutionary

Computation, IEEE World Congress on

Computational Computation, Volume 1,

Piscataway, NJ, pp. 82C87. IEEE. ,1994

[12]. R. C. Purshouse, P. J. Fleming ” The Multi-

objective Genetic Algorithm Applied to

Benchmark Problems–an Analysis,” Research

Report No. 796. Department of Automatic

Control and Systems Engineering University of

Sheffield, Sheffield, S1 3JD, UK. 2001

[13]. J. D. Schaffer “Multiple objective optimization

with vector evaluated genetic algorithms,” In J. J.

Grefenstette (Ed.),Proceedings of an International

Conference on Genetic Algorithms and Their

Applications, Pittsburgh, PA, pp. 93C100.

sponsored by Texas Instruments and U.S. Navy

Center for Applied Research in Artificial

Intelligence (NCARAI), 1985

[14]. N. Srinivas and K. Deb , ” Multiobjective

optimization using non-dominated sorting in

genetic algorithms,” Evolutionary Computation

2(3), 221C248, 1985

[15]. A. Tiwari and R. Roy(2002) ” Generalised

Regression GA for Handling Inseparable

Function Interaction: Algorithm and

Applications,” Proceedings of the seventh

international conference on parallel problem

solving from nature. (PPSN VII). Granada, Spain

[16]. E. Zitzler” Evolutionary Algorithms for

Multiobjective Optimization: Methods and

Applications,” Ph. D. thesis, Swiss Federal

Institute of Technology (ETH) Zurich,

Switzerland. TIK-Schriftenreihe Nr. 30, Diss

ETH No. 13398, Shaker Verlag, Aachen,

Germany, 1999

[17]. E. Zitzler, M. Laumanns and L. Thiele,” SPEA2:

Improving the Strength Pareto Evolutionary

Algorithm,” TIK-Report 103. ETH Zentrum,

Gloriastrasse 35, CH-8092 Zurich, Switzerland.

1999.

