
International Journal of Computer Applications (0975 – 8887)

Volume 18– No.2, March 2011

24

Stego System on Chip with LFSR based Information

Hiding Approach

R.Sundararaman
Assistant Professor

School of Electrical &
Electronics Engineering

SASTRA University, India

 Dr. Har Narayan Upadhyay
Associate Dean

School of Electrical &
Electronics Engineering

SASTRA University, India

ABSTRACT

This paper discusses about implementation of image

steganographic system on Field Programmable Gate Array and

the information hiding techniques in various images that are

stored in the reconfigurable hardware and external memory. As

a spatial domain steganography approach, Linear Feedback Shift

Register (LFSR) method has been used in stego architecture to

hide the information in the image. The LFSRs are utilized in this

approach as address generators. Different LFSR arrangements

using different polynomial expressions have been implemented

at the hardware level for hiding the secret data. Altera Cyclone

II FPGA has been used to implement stego architecture.

Synthesis report, Total time taken for hiding information at

hardware level, Performance of reconfigurable hardware under

various LFSR address generator schemes, MSE and PSNR

issues are also discussed in this paper.

General Terms

Information Security, LFSR, FPGA

Keywords

Hardware Steganography, Stego on chip Architecture

1. INTRODUCTION
In the present information age, the need to protect the

information is increasing rapidly. In order to protect valuable

data in computer and communication systems from unauthorized

disclosure and modification, reliable non-interceptable means

for data storage and transmission must be adopted .

Steganography is the art of covered writing which means the

information is hidden in a cover which may be audio,video,text

or image. A lot of steganographic techniques with image as

cover have been proposed earlier which fall under two

categories namely spatial domain and frequency domain. This

work mainly focuses on hardware steganography with image as

carrier (i.e.) possibility of implementation of Image

steganography algorithms on reconfigurable hardware like

FPGA. Hardware Steganographic system can support properties

like specific hardware dependency, High speed , ability to

interact with user interface, flexibility in changing the

information hiding algorithm in addition to the well known

properties like confidentiality, authentication and data integrity.

Field Programmable Gate Arrays have been widely used to

implement cryptographic algorithms. Moreover bitwise

operations are very well supported by FPGAs if they are chosen

for implementing hardware steganography. A number of

software based steganographic techniques have been proposed

in the past. Chi-Kwong and L.M.Cheng [1] proposed data hiding

by simple LSB substitution with an Optimal Pixel Adjustment

process. Another paper by Hala A. Farouk and Magdy Saeb [2]

which discusses about design and implementation of a Secret

Key Steganographic Micro-Architecture Employing FPGA,

where secret key steganographic technique implemented at

Xilinx XC2S100tq144-6 FPGA is discussed. They proposed a

micro architecture with an address generator block that consists

of shuffler, a block pointer memory and a shift & concatenate

unit. Another paper by Amirtharajan et.al [3] proposed hardware

stego method using 2D Image processing with LSB substitution

approach. Our work in this paper employs Image steganography

involving LSB substitution with an address generation scheme at

hardware level with the help of Linear Feedback Shift Register.

We have proposed an architecture that can be adopted in a stego

system involving variable message size, variable cover size and

variable key size. The final stego image can also be analyzed at

the software level with a Graphical User Interface.

The LFSR techniques employed in this design are widely used

in bit stream encryption in order to achieve the FPGA IP

Protection. LFSRs with maximal sequence length are a good

approach for an ideal security key, because they have good

statistical properties. In other words, it is difficult to analyze the

sequence in a steganographic attack, an analysis called

steganalysis. Because bitwise designs are possible with FPGAs,

such LFSRs are more efficiently realized with FPGAs than

Programmable DSPs. The initial value of the LFSR is called the

seed, and because the operation of the register is deterministic,

the stream of values produced by the register is completely

determined by its current (or previous) state. Likewise, because

the register has a finite number of possible states, it must

eventually enter a repeating cycle. However, an LFSR with a

well-chosen feedback function can produce a sequence of bits

which appears random and which has a very long cycle.For the

XOR LFSR there is always the possibility of the all-zero word,

which should never be reached. If the cycle starts with any

nonzero word, the cycle length is always 2l − 1. Sometimes, if

the FPGA wakes up with an all-zero state, it is more convenient

to use a “mirrored” or inverted LFSR circuit. If the all-zero word

is a valid pattern and produces exactly the inverse sequence, it is

necessary to substitute the XOR with a “not XOR” or XNOR

gate.

The rest of the paper is organized as follows. Section 2 discusses

about LFSRs used in this approach and their construction. In

section 3 proposed stego on chip architecture is discussed.

Section 4 explains about hardware implementation and GUI

development. Section 5 is on obtained results like MSE and

PSNR and section 6 concludes this paper.

International Journal of Computer Applications (0975 – 8887)

Volume 18– No.2, March 2011

25

2. LFSRs FOR STEGANOGRAPHY IN

 FPGAs:
This section discusses about various LFSRs used for embedding

the secret message in the cover image. LFSRs are used as

address generators in this approach. LFSRs are usually

constructed from primitive polynomials. The LFSR in this

approach uses a combination of D Flip-Flops and XOR gate.

The pseudo random number generation can be greatly achieved

with the help of primitive polynomials of various degrees. N –

Bit XOR based LFSR can generate 2N - 1 values (i.e.) pseudo

random number in binary form since XOR based LFSR should

never reach all zero condition. This LFSR can be loaded with a

value other than zero so that during every clock cycle, it will

generate a new pseudo random pattern. The initial load value

acts as key here which decides the random number sequence.

The pseudo random number generated shows way for hiding the

secret message bit in the pixels of the cover image. The cover

image pixels are thus numbered in a fashion that the pixel

location starts from 1 and goes on in ascending order. An S row

x T column image is reshaped as a single row x (SxT) column

array or (SxT) row x single column array. (i.e.) Image as two

dimensional array has now become one dimensional array. The

objective of this transformation is to effectively utilize the

pseudorandom number for identifying the pixel location to

embed the message bit/bits.

Suppose we take a 12 bit LFSR with a primitive polynomial

entry (6, 8, 11, 12). The basic representation of this primitive

polynomial having the degree 12 is 1 + x 6 + x 8 + x 11 + x 12.

These primitive polynomials always have twins which are also

primitive polynomials. These are time reversed versions of the

form

P k(x) = x M + x (M – a) + x (M – b) + x (M – c) + 1

In the above polynomial expression, assuming M = 12, a = 6, b

= 8 and c = 11,

P12(x) = x 12 + x (12 - 6) + x (12 – 8) + x (12 – 11) + 1

 = x 12 + x 6 + x 4 + x + 1.

Here „ M‟ represents the highest degree of the polynomial and

a,b and c are other coefficients. „M‟ also determines the address

width. A 12 bit LFSR (where M = 12) is used to specify 12 bit

address. The maximum address value specified by 12 bit LFSR

is 1111111111112 ((i.e.) 409510).

Fig 1 shows the structure of LFSRs for the above polynomial.

Square blocks that are numbered from 1 to 12 represent D Flip-

Flops. Also three XOR gates are used in these designs. The

design also has a load input through which the initial pattern

gets loaded into the shift register.

When designing LFSR with above polynomial, x 12 represents

the 12th D Flip-Flop. The primitive polynomial entry (1, 4, 6, 12)

means the output of first, fourth and sixth Flip-Flops have to be

XORed with the 12th D Flip-Flop output. Also the output of the

last D Flip-Flop (i.e.) 12th Flip-Flop has to be fed back to the

input of the first D Flip-Flop. As the synchronous clock is

applied to the LFSR, new patterns will be generated during

every clock pulse.

In fig 1 , let us consider q(1) as the output of D Flip –Flop - 1

and in this assumption q(2) for D Flip – Flop -2 and so on. Now

the following logical operations have to be done.

x1 = q(1) xor q(12)

x2 = q(4) xor q(12)

x3 = q(6) xor q(12)

Now the address generated during every clock cycle is a

combination of following bits:

q(12)&x1&q(2)&q(3)&x2&q(5)&x3&q(7)&q(8)&q(9)&q(10)&q(11)

The initial address value loaded into the LFSR decides the

successive random address values generated by LFSR as the

LFSR is clocked sequentially. The initial address is called as

seed. This seed value acts as key which has to be used for

decoding the message from stego image. For example, in a 12

bit LFSR with primitive polynomial x12 + x 6 + x 4 + x + 1, if an

initial address of 1010101010102 is loaded, the following

addresses will be generated successively during the application

of every clock pulse.

At t, P12(x) = 1010101010102.

At t + 1, P12(x) = 0101010101012

At t + 2, P12(x) = 1110000010102

At t + 3, P12(x) = 0111000001012

If the initial address of 1010101010112 is loaded, the address

generated during successive clock pulses undergoes following

changes.

At t, P12(x) = 1010101010112

At t + 1, P12(x) = 1001111101012

At t + 2, P12(x) = 1000010110102

At t + 3, P12(x) = 0100001011012

Therefore even a single bit change in the initial loading value

there will be ultimate change in the following values. This

property of LFSRs is vital in implementing the rich randomness

in information hiding in cover images. In order to cover all the

pixel locations of an image, this LFSR can be used to hide

information in a cover image of maximum size of 64 x 64,

which has 4096 pixels. Similarly a 8-bit LFSR can be used for

embedding data in a 16 x 16 cover image, 10 –bit LFSR can be

employed for 32 x 32 image, 14 – bit LFSR for 128 x 128

Image and 16 – bit LFSR for 256 x 256 Image. Fig 2 presents

the hardware simulation result of 12 – bit LFSR using Modelsim

software.

International Journal of Computer Applications (0975 – 8887)

Volume 18– No.2, March 2011

26

Fig 1. LFSR for Primitive Polynomial P12(x) = 1 + x + x 4+ x 6 + x 12

Fig 2. Modelsim Simulation results of LFSR with Primitive polynomial of 1 + x + x 4 + x 6 + x 12 and initial

load value (seed) of 1010101010102

3. PROPOSED STEGO ON CHIP

 ARCHITECTURE
This section explains the architecture for LFSR based spatial

domain LSB steganography implemented on a FPGA. External

SRAM is used in this architecture to store the cover and stego

images.

Fig 3 shows the stego architecture. The proposed architecture

deals with a 256 x 256 grayscale cover image and the

steganographic algorithm tested on the cover image. The cover

image is stored in a external SRAM, where same amount of

memory in SRAM is allocated for storing the stego image after

finishing the information hiding. The high speed asynchronous

CMOS static RAM IS61LV25616 has been employed in this

architecture in a move to store a number of cover images. A 256

x 256 grayscale image has 65,536 pixels. For storing a 256 x

256 image 65,536 bytes are required to be stored in the

memory. The SRAM has 18 bit address line and has 256K

locations. Each memory location in the SRAM is capable of

storing 16 bits which means two pixels at a location. So 65536

locations can store both cover image and stego image. The

purpose of allocating separate spaces for cover as well as stego

image is to copy the original image into the stego image space

in order to embed new information or to test new stego

algorithm.

The UART receiver in the stego architecture is used to receive

the data to be hidden in the cover image. The UART receiver

receives the message bytes through serial port of PC which

contains a GUI developed in Lab VIEW in order to transfer the

message bytes. The information in the form of ASCII characters

are transmitted at a baud rate of 9600 bps through serial port

and the same will be received by UART present in the

architecture. The UART receiver operates at a clock (Rx clk) of

16 times the baud rate for sampling the incoming bits perfectly

and thereby enabling error free reception of information. UART

receiver module receives every byte of data which follows a

frame format of start bit, 8 data bits and a stop bit. Upon

receiving every byte, the same is stored in a Block Random

Access Memory. The Block RAM is internal to the FPGA. In

this architecture, block RAM stores a maximum of 8192 bytes.

Internal signal „Embed Flag‟ becomes Logic „1‟ after receiving

the entire information bytes. The default status of signal „Embed

Flag‟ is Logic „0‟ and under this condition, the cover and stego

images have similar pixel values. When Embed Flag is

activated, data embedding module of the architecture starts its

function.

Table I: Primitive Polynomials for data embedding in

various cover images

Grayscale

Image

Size (Row

x

Column)

Primitive

Polynomial I used

for data embedding

Primitive Polynomial

II used for data

embedding

16 x 16

32 x 32

64 x 64

128 x 128

256 x 256

1 + x2 + x3 + x4 + x8

1 + x5 + x7 + x8 + x10

1 + x + x4 + x6 + x12

1 + x + x3 + x5 + x14

1 + x11 + x13 + x14 +x16

1 + x4 + x5 + x6 + x8

1 + x2 + x3 + x5 + x10

1 + x6 + x8 + x11 + x12

1 + x9 + x11 + x13 + x14

1 + x2 + x3 + x5 + x16

 2 3 4 5 6

12

 7 8 9 1

11 10

International Journal of Computer Applications (0975 – 8887)

Volume 18– No.2, March 2011

27

Fig 3: Steganographic system Hardware Architecture with LFSR based Information hiding Approach

The data embedding module has three main inputs. They are

Cover Image, secondly Block RAM which has message bytes

and thirdly LFSR that generates the particular address where

information has to be hidden. Several images are tested with

this architecture which include 16x16, 32x32 , 64x64, 128x128

and 256x256 size cover images. Since this architecture mainly

works on steganographic system hardware implementation on a

256x256 image, 16 bit LFSR is employed in this architecture.

The main objective of LFSR is to generate random addresses

which in turn correspond to pixel locations and at the same time

LFSR should be capable of generating all the pixel locations in

a process to check the maximum embedding capacity. In

general, PSNR is calculated for a stego image after hiding

information bit/bits in almost all the locations of the

corresponding cover image as for as traditional software based

steganographic techniques are concerned. The hardware

architecture also aims to hide the information in all pixels which

makes a better comparison of stego technique in software as

well as hardware. The steganography present in this architecture

is performed with two 16 bit LFSRs separately which are

mentioned in the Table – I. They are 1 + x 11 + x 13 + x 14 + x 16

and 1 + x 2 + x 3 + x 5 + x 16. The LFSR is activated upon

receiving entire information to be hidden in the cover image.

This activation is achieved with the help of signal Embed Flag

going active high. The LFSR is initialized with a 16-bit input

pattern other than all zeros. This 16-bit input pattern is the

starting address where the information hiding starts. As already

mentioned, the entire image is considered here as one

dimensional array which contains pixels consecutively either

row wise or column wise. So pixel location identification

requires only one address and the address generated by the

LFSR points out the pixel location. As the SRAM used in the

approach stores two pixels per location, addresses will be 1,2 in

the first memory location, 3,4 in the next location etc.,. The 16-

bit LFSR kept in place to generate addresses for 256x 256

image uses 100 MHz clock which is generated from 50 MHz

clock through a Phase Locked Loop. For small size images if

employed in the architecture where external SRAM is not

necessary, a 300 MHz clock can be used. This fetches high

speed data embedding in the cover image. The reason for using

100 MHz clock for the present case is that the minimum access

time to read or write data into the external SRAM is 10

nanoseconds. During 100 MHz clock pulse, one 16 bit address

will be generated. The pixel value from the SRAM is read

through the data lines after making write enable (WE) to active

high during the second clock pulse. The chip enable (CE) and

Output Enable (OE) lines should also be at active low in order

to have full access to the SRAM. During the same pulse, the

character position and corresponding bit in selected character

from the block RAM are transferred to two signals namely A

and C , the details of which are important to hide it in the pixel.

The third pulse is used to write the new pixel value in SRAM

which contains the information bit embedded in it. For example,

if a character „0‟ has to be hidden in the image, eight pixels are

needed if k =1 (k represents no. of bit positions used to embed

SRAM

0001h

8000h

8001h

10000h

Original

Image

Stego

Image

WE CE OE

UART

Transmitter

 Txclk Serialout

CE OE

Tx Flag

Decoding

Logic

 8 Bit

UART

Receiver

Rx Clk

Serial In

Block RAM

Message Bytes

Logic for Data

Embedding

0

1

1

Linear Feedback Shift

Register (LFSR)

 8 Bit

 16 Bit

Initial Pattern

 16 Bit

 Address

50 MHz

Clock

PLL

x2

LFSR

Clk

 100

 MHz

 18 Bit

 Address

 Embed

 Flag

International Journal of Computer Applications (0975 – 8887)

Volume 18– No.2, March 2011

28

the message). The character „0‟ can be represented as

“00110000” which is equivalent to 30 in hexadecimal. The

character „0‟ may be present in any location of the block RAM.

This location and particular bit of the character to be hidden are

computed by following steps during the second clock pulse.

Step 1: Initialize a counter named „count‟ that can count from 0

 to 65535.

Step 2: Let A = count / 8. A represents the specific character.A

 varies from 0 to 8191, which means a total of 8192 data

 Bytes. These bytes are needed to embed information bit

 in all the 65536 pixels of a 256x256 grayscale image.

Step 3: Let C = count mod 8. C value varies from 0 to 7. The C

 contains information about bit position in every

 character. If A = 10 and C = 2, it means third bit

 from MSB of tenth character that is stored in Block

 RAM.

During the third pulse, the count value is incremented by one in

order to choose the successive bit of a specific character. Here

the character bits are chosen consecutively and pixel locations

are chosen randomly with LFSR value.

If k is 1, only one bit present in the character is hidden in the

particular pixel. Usually, the bit is hidden in the LSB of the

pixel value for the case k =1. similarly, if k = 2, two bits in a

pixel, if k = 3 three bits in a pixel from LSB and for k = 4 four

bits in a pixel from LSB are used for information hiding. As k

increases, more amount of information can be hidden in the

message but at the cost of huge deviation in histogram of the

stego image Vs cover image and also MSE, PSNR will be poor.

Earlier works on software based steganographic systems point

out that k = 4 is the maximum that can be considered for

information hiding. In this hardware architecture, k = 1 is

considered (i.e.) only one bit in every pixel carries the hidden

information.

After the embedding process comes to an end, the stego image

stored in SRAM can be transmitted through UART transmitter

module. The Tx Flag is a control bit which is when activated by

the user, the pixels of stego image are transmitted one by one.

The Tx clk is the transmitter clock which is operating at 9600

Hz is a derived clock from 50 MHz. The transmitter follows a

frame pattern of start bit, 8 data bits and a stop bit in a process

to send pixels consecutively. Both for UART transmitter and

receiver, state machine with three states namely start, data and

stop is designed. In the transmitter state machine, the stego

pixels are read during the transmission of start bit through serial

output pin. For reading the data from SRAM, the signal write

enable should be kept at Logic High. During each time two

pixels can be read simultaneously as the SRAM has 16 bit data

bus. The decoding logic is used to specify the required stego

pixel address from where the pixels should be fetched.

The advantage of this hardware architecture are:

1. Even though the proposed architecture works on maximum

 character hiding in cover image to check the ability to hide

 maximum embedding, the architecture has flexibility to

 change the number of characters to be hidden in image

 cover, by sending a couple of bytes through serial port , which

 contain the details about number of data bytes.

2, Ability to hide message bytes at high speed with the use of

 100 MHz clock. The information hiding can be done with a

 300 MHz clock if internal block RAM is used to store the

 images.

3. The architecture can use any type of 16-bit LFSR just by

 adding a control bit/bits thereby increasing the possibilities to

 embed the information in a number of ways.

4. Without knowing the baud rate with which the pixels are

 transmitted through the UART transmitter, the pixel

 reception will not be proper when stego image is received for

 retrieving the information.

5. From the security point of view, if this architecture is

 implemented on a specific reconfigurable hardware, without

 the particular bit file or sram object file, the stego image

 cannot be obtained. This aspect increases the information

 security by enabling particular hardware chip dependency in

 decrypting the message.

4. HARDWARE IMPLEMENTATION AND

 GUI DEVELOPMENT:
This section discusses about hardware implementation of stego

architecture, time taken for hiding the information in

reconfigurable hardware and Graphical User Interface for

analyzing the stego image. The proposed stego architecture has

been implemented in Altera FPGA EP2C20F484C7. This FPGA

has a little over 18,000 logic elements, 4 PLLs and other

features. This FPGA has been used to implement LFSR based

LSB data embedding technique present in multiple such

architectures where various images are used. The algorithm is

tested in 16x16, 32x32, 64x64 ,128x128 and 256x256 cover

images. Two LFSR patterns have been used for each image

present in hardware. The LFSR patterns used in this approach

have been already listed in Table – I. The synthesis reports

showcase the hardware details for various techniques.

4.1 Synthesis Reports:
Altera‟s Quartus II Design software Version 7.2 web edition

has been used for hardware implementation. From the synthesis

reports it is clear that when the images are stored in external

memory, the hardware consumption is very less even for

performing steganography on a 256 x 256 gray scale image. At

the same time, when Block RAM is used for storage, more

hardware is needed. The time taken for information hiding is

analyzed in detail in the next sub section where the dependency

between message size and information hiding time can be

studied.

FPGA Used : EP2C20F484C7

Total Logic Elements: 18,752

Total Registers : 18,752

Total Pins : 315

Total Memory Bits (Block RAM) : 239616 bits (234 K)

Total Memory Bits(External SRAM) : 256K x 16 Bits

Total PLLs: 4 (Used PLLs : 1)

Image Type: Lena

Table 2(a). Synthesis Reports for stego architecture with

various cover images stored in internal Block RAM

International Journal of Computer Applications (0975 – 8887)

Volume 18– No.2, March 2011

29

Image Size Utilized Logic

Elements

Utilized Memory

Bits (Block RAM)

16 x 16 954 2048

32 x 32 3398 8192

64 x 64 11493 32768

Table 2(b). Synthesis Reports for stego architecture with

various cover images stored in External Static RAM

Image Size Utilized Logic

Elements

Utilized SRAM

Memory Locations

128 x 128 331 16384

256 x 256 340 65536

4.2 Time taken to embed the Secret

information in Cover Image:
This part discusses about the total time taken for hiding message

in various size cover images. K = 1 Bit Per Pixel (BPP) has

been considered here.

4.2.1 16x16 Image:
For a 16x16 cover image 32 bytes of characters have been used

to embed the information in all the 256 pixels, where each pixel

contains one bit of information.

Stego chip Master clock frequency = 50 MHz.

LFSR clock frequency = 300 MHz (derived from 50 MHz with

PLL).

Clock cycles required to hide one bit = 2 cycles of 300 MHz

Clock cycles required to hide one character = 2 x 8 = 16 cycles

of 300 MHz

Time taken to hide entire information in cover image that is

stored in block RAM = 32 * 16 * (1/(300MHz))

 = 1.70 microseconds.

4.2.2. 256 x 256 Image:

For a 256 x 256 cover image, 8192 bytes of characters have

been used to embed the information in all the 65536 pixels. The

LFSR clock frequency for this case is 100 MHz. The stego

image is stored in external SRAM.

Time taken to hide entire information in cover image

 = 8192 * 24 * (1/(100MHz)) = 1.96 milliseconds.

Table 3 lists the time taken to hide information in various cover

images.

Table 3. Time taken to embed secret message in FPGA /

SRAM (k = 1)

Image

Size

Message

Embedding Time

in Hardware in

seconds (Proposed

Methodology)

Message

Embedding Time in

Hardware in

seconds

(Methodology by

Amirtharajan et.al

[3])

16 x 16 0.00000170 --

32 x 32 0.00000682 --

64 x 64 0.00002730 --

128 x 128 0.00049 --

256 x 256 0.00196 0.0115

From Table 3, it is evident that the proposed method, shows a

reduction in time taken to embed secret information in a cover

image of size 256 x 256. Our method takes 0.00196 seconds

which is 5.867 times lesser than the embedding time proposed in

[3].

4.3 GUI Development:
Graphical User Interface is developed with LabVIEW for

transmitting the information to be hidden in the cover image

through PC and similarly for receiving the stego image and to

extract the message hidden. The information bytes are

transmitted one by one through Virtual Instrumentation

Software Architecture (VISA) node which fetches ASCII

characters to serial output pin of RS232. VISA write function is

used for transmission of data. The first two bytes contain the

length of the message bytes. The transmitted bytes are received

by the UART receiver module present in the stego chip. Once

the Tx flag is activated in the FPGA, the stego image is

transferred to the PC through the UART transmitter module.

The VISA write function present in the GUI receives the entire

stego image as ASCII characters. The ASCII characters are then

converted to their 8-bit equivalent values with „string to byte

array‟ function and they are grouped to appear as stego image to

the user. Then the algorithm developed in GUI extracts the

information.

4.4 Extracting Phase:
The data hidden can be retrieved only if it is being received by

the GUI and corresponding extracting algorithm is

implemented. The initial pattern that is loaded into the LFSR

acts as key in order to extract the information from stego image.

The construction of LFSR of a particular primitive polynomial,

initial pattern (seed) setting and baud rate are some of the key

aspects of this information extraction. For example, if a 16 bit

XOR based LFSR is employed, where the key length may go

upto 16, 216 – 1 possible keys are there if key length is

considered as 16. If key length is taken as 8, and if we keep

initial value of key as 10101010, a pattern of

1010101001010101 may be loaded into the LFSR at the start of

the embedding. This pattern can be generated simply by

International Journal of Computer Applications (0975 – 8887)

Volume 18– No.2, March 2011

30

concatenating the original key of 8 bit length and its

complement.(i.e.) Initial pattern of 16 bit LFSR = 10101010 &

01010101.

Similarly this approach gives a lot of flexibility in choosing a

key of any length from 1 to 16. This method is a hardware

dependent one as information hiding process is happening with

reference to a clock edge. For hiding information in a 64 x 64

image that is stored in Block RAM,, the positive edge of every

300 MHz clock cycle, embeds a bit in a pixel location specified

by LFSR. Also LFSR generates a random address with

reference to a clock. So without having idea about the timing

and initial pattern which is the key, retrieval of original

information will be a tedious one. The extracting phase can be

explained in steps as follows.

Step 1: Receive the entire pixels of stego image as bytes from

 FPGA.

Step 2: Align the bytes to form the stego image in GUI.

Step 3: Generate the LFSR patterns (addresses) for the specific

 polynomial with key initial load value (i.e.) seed.

Step 4: Align the pixels present in the address location of stego

 image specified by the LFSR one by one.

Step 5: Extract the LSB of every pixel.

Step 6: Group every 8 bits into a character and then concatenate

 the entire set of characters. This group of characters will

 be the information we look out for.

For embedding data in a 256 x 256 cover image, if 16 bit LFSR

of primitive polynomial 1 + x 2 + x 3 + x 5 + x 16 is used and an

initial pattern of 01010101010101012 (2184510) is loaded into

the LFSR, the information bits are hidden in the following

locations listed in Table – 4 consecutively.

Table 4. LSB Separation from various Pixels

Pixel Location

Pixel Value

of stego

image

(Lena)

LSB of

the Pixel

value

01010101010101012 (2184510)

10011110101010102 (4061810)

01001111010101012 (2030910)

10010011101010102 (3780210)

01001001110101012 (1890110)

10010000111010102 (3709810)

01001000011101012 (1854910)

10010000001110102 (3692210)

68

147

81

98

187

152

84

58

0

1

1

0

1

0

0

0

During extracting phase, if the LSB values present in the Table

4 are concatenated, we get 011010002 which represents the

ASCII character „h‟. similarly the other characters can also be

found out by taking out the LSB‟s of the address locations

specified by the 16 bit LFSR.

5. RESULTS
This section discusses about MSE,PSNR results and sample

cover and stego images and their histogram analysis.

5.1 MSE and PSNR:
The Mean Square Error (MSE) and Peak Signal to Noise Ratio

(PSNR) of a received stego image can be calculated as follows:

MSE =

2M N

XY XY

X = 1 Y = 1

1
S C

MN

 PSNR =

2

max
10

c
10 log

MSE

Where X and Y are image coordinates, M and N are the

dimensions of the image XYS is the generated stego-image and

XYC is the cover image. Also
2

maxc holds the maximum value

in the image which is 255 for the grayscale images. Table 5(a)

represents MSE and PSNR values of various size Lena images

and table 5(b) represents MSE and PSNR values of various size

cameraman images.

Table 5(a) MSE and PSNR for Lena Images , k = 1

Cover

image

Size Primitive

polynomial

MSE PSNR

(dB)

L
en

a

16 x 16

1+ x2 + x3+ x4 + x 8

1+ x4 + x5 + x6 + x8

0.5195

0.4843

50.9747

51.2790

32 x 32 1+x5+x7 + x 8 + x10

1+x2+x3 + x 5 + x10

0.5136

0.4980

51.0239

51.1581

64 x 64 1+x+x 4 + x 6 + x12

1+x6+x8+x 11 + x12

0.4934

0.5021

51.1987

51.1221

128x128

1+x+ x 3 + x 5 + x14

1+x9+x11+x 13 + x14

0.4998

0.4955

51.1422

51.1800

256x256 1+x11+x13+x14 + x16

1+x2+ x 3 +x 5 + x16

0.5208

0.5193

50.9635

50.9762

Table 5(b) MSE and PSNR for Cameraman Images , k = 1

Cover

image

Size Primitive

polynomial

MSE PSNR

(dB)

C
am

er
am

an

16 x 16

1+ x2 + x3+ x4 + x 8

1+ x4 + x5 + x6 + x8

0.5195

0.4843

50.9747

51.2790

32 x 32 1+x5+x7 + x 8 + x10

1+x2+x3 + x 5 + x10

0.5136

0.4980

51.0239

51.1581

64 x 64 1+x+x 4 + x 6 + x12

1+x6+x8+x 11 + x12

0.4934

0.5021

51.1987

51.1221

128x128 1+x+ x 3 + x 5 + x14

1+x9+x11+x 13 + x14

0.4998

0.4955

51.1422

51.1800

256x256 1+x11+x13+x14 + x16

1+x2+ x 3 +x 5 + x16

0.5208

0.5193

50.9635

50.9762

International Journal of Computer Applications (0975 – 8887)

Volume 18– No.2, March 2011

31

5.2 Sample Cover and stego images and their

 histograms:
The worst case PSNR for k = 1 is 48.13 dB [1].The results

obtained show an average PSNR of 51 dB which is a very good

value for k = 1.

4(a) 4(b)

4 (c) 4(d)

Fig 4. (a)Original 256 x 256 Lena image

 (b) Stego 256 x 256 Lena Image

 (c) Histogram of fig 4(a) (d) Histogram of fig 4(b)

5(a) 5(b)

5(c) 5(d)

Fig 5. (a)Original 256 x 256 Cameraman image

 (b) Stego 256 x 256 Cameraman Image

 (c) Histogram of fig 5(a) (d) Histogram of fig 5(b)

6. CONCLUSION
The LFSR based steganographic system architecture with

different sizes of cover images is discussed in this paper. Due to

the various advantages of LFSR, the information hiding in cover

image present in reconfigurable hardware can be done very

effectively. The proposed method offers high speed in secret

data embedding at hardware level. This stego architecture may

further be enhanced to use various bit wise functions so as to

improve the techniques of hardware steganography.

7. ACKNOWLEDGEMENTS
The authors would like to thank Dr.R.John Bosco Balaguru,

Associate Dean (Research) / ECE and Mr. R. Amirtharajan /

Assistant Professor / ECE / SEEE / SASTRA University for

creating interest in information hiding and their valuable

guidance. The authors also wish to thank their Hardware stego

group students R.Rangarajan, S. Arjun, M.K.Guruprasanna and

R.Ashwath for their valuable contribution to this work.

8. REFERENCES:
[1] Chi-Kwong ,L.M.Cheng, Hiding data in images by simple

LSB substitution, Pattern Recognition 37 (2004) 469 – 474.

[2] Hala A. Farouk, Magdy Saeb, Design and

Implementation of a Secret Key Steganographic Micro-

Architecture Employing FPGA , Proceedings of the 2004,

Asia and South Pacific Design Automation Conference

(ASP-DAC‟04).

[3] R.Amirtharajan, R.John Bosco Balaguru, Vivek Ganesan,

Design and analysis of Prototype Hardware for Secret

sharing using 2-D Image Processing, International Journal

of Computer Applications (0975-8887), Volume 4 – No 4,

July 2010.

[4] Abbas Cheddad , Joan Condell, Kevin Curran, Paul Mc

Kevitt , Digital image steganography: Survey and analysis

of current methods, signal processing 90 (2010),727–752.

[5] Da-Chun Wu , Wen-Hsiang Tsai, A steganographic method

for images by pixel-value Differencing , Pattern

Recognition Letters 24 (2003) ,1613–1626.

[6] S. Katzenbeisser, F.A.P. Petitcolas, Information Hiding

Techniques for Steganography and Digital watermarking,

Artech House, Norwood, MA, 2000.

[7] Uwe Meyer-Baese, Digital Signal Processing with Field

Programmable Gate Arrays, springer, 2007 ,401 – 475.

[8] Francisco Rodriguez-Henriquez ,N.A. Saqib ,A. Diaz-Perez

Cetin Kaya Koc, Cryptographic Algorithms on

Reconfigurable Hardware, Springer , 2006.

