
International Journal of Computer Applications (0975 – 8887)

Volume 63– No.13, February 2013

29

Enhanced GUI Test Case Generation Method using

Two-stage Classification Method

E.Vijayakumar,

Asst.Professor/MCA,
Professional Institutions,

Coimbatore,Tamilnadu,India

M.Punithavalli,
Director/MCA,

Ramakrishna Engg.College,
Coimbatore, Tamilnadu,India

ABSTRACT

Software testing is a task of quality assurance where the main

aim is to identify errors. Graphical User Interfaces (GUIs), a

class of Event-Driven Software (EDS), is increasingly used to

increase the human-to-computer interaction. General tests are

not applied directly to GUIs because of the increased number

of states generated because of huge number of permutations

of input events. This paper proposes techniques that use a

reduction-based test case generation model that is enhanced

by identifying feasible and infeasible test sequences. The

proposed method uses a two-stage classification process,

where two classifiers, BPNN (Back Propagation Neural

Network) and Support Vector Machine (SVM), are used. The

main goal here is to improve the performance of the second

classifier, SVM, by using the results of the first classifier,

BPNN. Experimental results show that the proposed method

has increased the accuracy of classification.

Keywords

Graphical User Interface, Test Case Generation, Infeasible

Test Sequences, Support Vector Machine, Back Propagation

Neural Network.

1. INTRODUCTION
Advancements in information technology, computers and

intelligent devices have increased the use of software systems

in all aspects of modern society. This increased use of

software in daily life demands them to function without

errors. Quality assurance is the planned and systematic way of

monitoring the methods and processes of a software to ensure

quality. One popular quality assurance technique is Software

Testing which is the planned process that is used to identify

the correctness and completeness of a software system and is

employed during the development, implementation and

maintenance phases of a software lifecycle.

Event-Driven Software (EDS) have rapidly become a critical

part of business for many organizations. All EDSs take

sequences of events (e.g., messages and mouse-clicks) as

input, change their state, and produce an output(e.g., events,

system calls, and text messages) (Bryce and Menon, 2007)

Common examples of EDS include graphical user interfaces

(GUIs) (Abdul et al., 2010), web applications (Kumar and

Goel, 2012), network protocols (Gong et al., 2009), embedded

software (Gu and Shin, 2005), software components (Adams

and Grib, 1999) and device drivers (Tchamgoue et al., 2012).

The term Events can be user actions such as clicking a mouse

button or pressing a key or System occurrences. Most Modern

EDS applications, particularly those that run in Macintosh and

Windows environments, are said to be Event-Driven because

they are designed to respond to events. Quality assurance

tasks (testing) have become important for EDS as they are

increasingly being used in many important applications.

One important class of EDS is Graphical User Interface (GUI)

which is used to improve the Human-Computer Interaction

(HCI). Graphical User Interface (GUI), consists of graphical

controls that the user can select using mouse or keyboard and

typically, consists of components like menu bar, toolbar,

windows and buttons and has become the de factor standard

for user interface in almost all of the modern technologies.

Research has shown that, in general, 40% to 60% of the total

software code has been used for implementing GUI (Memon,

2007; Myers, 1995). In spite of GUI providing easy way to

use the software, they make the development process of the

software complex (Isabella and Retna, 2012) and make up a

large proportion of all software errors. A case study conducted

by Mohapartra (2001) that investigated the sources of errors

using a live project in INFOSYS Technologies Limited, India,

revealed that more than 50% of errors were contributed by

GUI alone. All these make GUI testing a mandatory process

where the goal is to ensure that the GUI meets its written

specifications. In spite of these studies showing the

importance of testing in GUI, approaches that test the

functional correction of these interfaces has been largely

neglected and is only, in the past few years, have got

attention.

GUI testing consists of methods for validating GUI objects,

checking functional flows by operating GUI objects and

verifying output data which are generated in backend and then

displayed in front pages (Xiaochun et al., 2008). GUI testing

can be performed manually or in a semi-automatic or fully

automatic fashion. However, the tendency is to automate as

much as possible so as to make it very fast and have a huge

coverage which would otherwise take a tremendous time for a

human. Several researchers have proposed strategies for

automating the GUI testing (Zhao, 2006; Hendrick et al.,

2005) as they have the potential to reduce testing cost and

improve software quality.

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.13, February 2013

30

General tests are not applied directly to GUIs because of the

increased number of states generated because of huge number

of permutations of input events. For adequate testing, an event

may need to be tested in many of these states, requiring large

number of test cases (each represented as event sequent)

(Memon, 2007; Khum et al., 2004). This increases the need

for reduction and prioritization of GUI test suites. In response

to these requirements, this paper presents a test case

framework that focus on three important tasks, namely, GUI

test case generation, test case prioritization and test case

reduction.

Arlt et al. (2011) proposed a GUI test case generation method

that reduced the number of test cases generated by identifying

two user interactions, namely, shared event handlers and

context-sensitive event handlers. The shared event handler

represents common code fragments that are used by different

user interactions. Context sensitive event handlers states that

the control flow of a user interaction handling of a program

fragment depends on the order of the preceding user

interactions. This framework eliminates redundant events and

thus reduces the number of test cases generated. As the

number of test cases generated has a direct influence on the

performance of the testing process, it is always desirable to

reduce this number in a way it does degrade the testing

performance. For this purpose, this paper uses a method to

identify feasible and infeasible test cases and avoids infeasible

test cases. An event sequence in a test case is infeasible when

atleast one event that is expected to be available at the point

during execution is not available by the GUI state. This

situation may arise due to a bug in GUI or a constraint

between events in GUI specification.

The identification of feasible and non-feasible test cases is

done using a novel two-stage machine learning classification

algorithm that uses two different classifiers during discovery

of infeasible events. The aim of using two classifiers is: given

an test dataset, T, consisting of test sequences {t1, t2, …}, the

aim of the first classifier is to preprocess T for data reduction,

that is, the first classifier identifies all correctly classified data

to obtain a refined dataset T' of T. T' is then used to train the

second classifier which identifies feasible test cases. The

usage of the refined dataset could improve the classification

performance of the second classifier. Usage of machine

learning algorithm in optimizing test case generation process

is sparse (Gove and Faytong, 2012) eventhough its use in

various other segments of software engineering is vast. The

use of two classifiers, to the best of author’s knowledge, is a

new concept that is new in software testing. The rest of the

paper is organized as follows. Section 2 describes the

framework proposed by Arlt et al. (2011). This model is

referred to as ATCG (Automatic Test Case Generation)

model in this paper. Section 3 presents the methodology used

to enhance ATCG, which combines the identification of

infeasible test cases using two-stage classifiers. Section 4

presents the experimentation results while Section 5

concludes the research work with future research directions.

ATCG MODEL

The ATCG model generates test cases in three steps (Figure

1). They are, extracting widgets and handlers, generating the

test model and generate and execute test cases. In this model,

an application is defined by a GUI and a set of instructions

(java code). The GUI consists of widgets (buttons, text boxes,

radio buttons, etc.) which the users use for interaction. Each

interaction generates an event ‘e’ which consists of the widge

used along with the type of interaction and each event is

associated with an event handler ‘h’. Event handlers are

routines that are executed when an event e occurs. If E is the

set of all events, H consists of all event handlers, the relation

Ex : E x H can identify the set of instruction h = Ex(e) that

handles an event e. The GUI test case is then a sequence of

events t = {e1, …, en} and an oracle descries if the output of a

sequence meets the requirements. The GUI test model is

defined as M = (s,), where S is a finite set of states and  = S

× (E  {}) × S is a set of transitions between two states

labeled with an event e  E.

The pseudo codes for extracting widgets and handlers,

collecting context-sensitive event handlers and test case

generation are given in Figures 2 to 4 respectively. The first

step produces a list of (e, h) of event e and event handler h, as

well as a list of events Ctx(h) that might affect the control-

flow of h. The model M = (S, δ) is a finite automaton with

transitions labeled with events e or ϵ. First, the model contains

an initial state s0  S and no transitions. For each pair (e, h), a

state s and one transition (s0, e, s) and another transition (s, ϵ,

s0) that loops back to the initial state is created. The process

iterates over the set of context events Ctx(h) and finally, a

new state s′ and an edge (s0, ec, s′) is created for each ec 

Ctx(h) and one edge (s′, e, s).

Java

Classes

GUI

Extract Widgets and

Event Handlers

Generate Test Model

Generate and Execute

test cases

Figure 1 : Test Case Generation Model

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.13, February 2013

31

3. PROPOSED METHOD
The proposed model consists of four steps while creating the

GUI test case model. The first two steps correspond to the

ATCG model. The third step is modified to include a

reduction step that identifies infeasible event sequences. For

this purpose, the model uses Back Propagation Neural

Network (BPNN) and Support Vector Machine (SVM). The

classifiers considered are binary classifiers as the test

sequences have to be grouped as either feasible or infeasible.

The steps involved in step 3 are summarized in Figure 5.

The conversion process mentioned in step 2 consists of four

stages. The first stage handles the value assignment of the first

N vector attributes, where N is the number of different IDs in

the sequence. Index ‘i’ in the resulting vector corresponds to

the number of times that event ‘i’ appears in the test case.

This step simply counts the number of appearance of each ID.

The second stage determines all the possible pairwise

combinations. For this purpose, a vector P is created which

lists all the possible combinations of the available IDs by

iterating from the lowest ID to the highest. Combinations of

the same ID are excluded (example : 22). Each event ID ‘i’

will have N − 1 ordered pairs that start with ID ‘i', where N is

the number of different IDs in the GUI. The third stage then

iterates through the input test case counting all the

appearances of each combination found in vector P (e.g.,

counting the number of times that 0 occurs immediately

before 1, the number of times 0 occurs immediately before 2,

etc.). Each count is appended to the Basic vector. Finally, the

fourth stage iterates through the test case counting all the

appearances of each generated combination as well, with one

difference to the third stage: this run counts all the times the

second pair ID appears after the first pair ID in the given test

case. Each of these results is appended to the Basic vector.

For example, let a GUI have event IDs {0, 1, 2} and let the

original test case be <0 1 2 1 2>. Then the converted feature

vector is after stage 1 is <1 2 2>. This stage simply counts the

number of appearance of each ID. Stage 2 produces < 01 02

10 12 20 21 > and Stage 3 results with <1 2 2 1 0 0 2 0 1>

where <1 2 2> is the original basic vector from step 1 and <1

0 0 2 0 1> are the counts of each pair in P that occurs in the

test case. The final converted feature vector is produced by

stage 4 is <1 2 2 2 2 0 2 0 1>.

In the next step, the converted feature vector is partitioned

into training and testing sets. In order for the classification

algorithms to learn to classify feasible and infeasible test

cases, the training data must include both types of test cases.

Let Tr and Te denote the training and testing partitions. A

constant x is included to indicate the number of data used for

training. The paper uses five values for x, {10, 20, 30, 40, 50).

for each (Java class in set) do

 for each (attribute in Java Class) do

 if (attribute is a widget) then

 for each (Event e of widget) do

 if (e is in Ex) then

 Skip (redundant) widget

 else if (event handler h is empty) then

 Skip (dead) widget

 else

 Store Ex (e) = h

 end if

 end for

 else

 Skip attribute

 end if

 end for

end for

Figure 2 : Extract Widgets and Handlers

Begin

 Ctx (h) = ;

 for each (conditional choice c in h) do

 if (c reads field of widget w) then

 Add events of w to Ctx (h);

 end if

 end for

end

Figure 4 : Test Case Generation

State s = initial state of M; Test Case tc := {}

while (timeout is not reach) do

 Pick randomly (s, e, s')  ; s := s′; tc := tc + e

 if (size(tc)≥TCsize) and (s is initial state) then

 try {Execute the test case tc}

 catch {Report tc }

 end try

 Test Case tc := {}

 end if

end while

Figure 3 : Context-Sensitive Event Handler

Step 1 : Generate test sequences using procedure in Figures 2, 3, 4.

Step 2 : Conversion of test sequences – Classifiers require data to be

numeric vectors. But test cases are sequences of ID. Hence, a

conversion process is needed. Let the converted test sequence be

termed as dataset, T.

Step 3 : Partition T into training (Tr) and testing (Te) sequences.

Step 4 : Use Tr to train BPNN and test the trained network using Te.

Collect only those sequences of T that were correctly classified and

treat this new testing set (Te').

Step 5 : Use Te' to train the second classifier SVM.

Figure 5 : Test Case Generation and Reduction Algorithm

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.13, February 2013

32

The partitioning process begins by constructing two sets I and

F, each consisting of feasible and infeasible test cases

respectively. Add x% of I and F to Tr and the remaining to

Te.

The final step uses the two-stage classifiers to classify the test

cases as feasible and infeasible. The process is shown in

Figure 6.

4. EXPERIMENTAL RESULTS
The procedure for creating the test case is detailed as follows.

As mentioned previously, the data set is a set of test suites,

with each test suite consisting of a set of test cases. Each test

case is of length n and is composed of a string containing n

tokes denoting the GUI events. The tokens can be number

(test case), feasibility (F) or a value 0 indicating a failure

status. For example, consider <1 0 3 2 4 F 3>. This is a test

case sequence of length 5 and is considered infeasible and

failed on event at index 3, corresponding to event 2. The test

case length considered as 5, 10, 15 and 20. To evaluate the

performance of the proposed method, four Terp applications

(TerpOffice, 2009) namely, TerpWord, TerpPaint TerpPresent

and TerpSpreadsheet was used. The attributes of the selected

applications are given in Table 1.

Attribute
Terp

Word

Terp

Paint

Terp

Present

Terp

SpreadSheet

Classes 9 42 4 25

Event Handlers 39 95 91 37

Shared Event Handler 11 1 24 10

Context Sensitive

Event Handler
24 69 74 35

Windows 8 8 5 6

Widgets 50 92 115 51

LOC 6842 17730 25072 126909

The main aim of the experiments was to analyze the effect of

training data set size on classification errors. For this purpose,

the training set size was creating using 10%, 20%, 30%, 40%

and 50% of the GUI test cases for each GUI application. The

correctly classified percentage is used as the performance

metric to analyze the performance of the proposed method.

The results are compared with single classifier (SVM).

Figures 7 to 10 shows the results obtained for the four

applications respectively.

From the figures, it could be seen that with all the four

applications, the proposed two-stage classifier that uses two

classifiers, BPNN and SVM, shows improved performance.

On average, the proposed method showed 84.65%, 85.52%,

87.52% and 82.47% classification accuracy. When compared

with the average result of the existing (SVM) classifier, the

proposed performance showed an average gain of 4.29%,

3.32%, 3.47% and 4.04% respectively on TerpWord,

TerpPaint, TerpPresent and TerpSpreadsheet. While

considering the varying training size, it can be seen that the

classification performance has a direct impact on training size.

5. CONCLUSION

This paper presented an enhanced test case model that first

created test cases by reducing the number of redundant test

cases. Further the test cases generated were further refined by

identifying infeasible test sequences. For this purpose, a two-

stage classifier was used. The two stage classifier uses two

classifiers, namely, BPNN and SVM. The BPNN classifier

was first used to classify the test case dataset and only the

corrected classified data was used to train the second

classifier, SVM. This two-step process, improved the

classification efficiency in terms of correctly classified data.

On average, the proposed method was able to achieve an

accuracy of 84.21%, which is a positive improvement when

compared with the average performance of 82.73% when

classified with SVM classifier. In future, plans to enhance this

model with prioritization techniques are made.

Training
set (Tr)

BPNN

classifier

Correct

classifi-
cation

SVM

classifier

Feasible
cases

Training

set (Te)

Infeasibl
e cases

Training set (Te')

International Journal of Computer Applications (0975 – 8887)

Volume 63– No.13, February 2013

33

6. REFERENCES

[1]. Abdul, R., Naveed, E., Qamar, A., Shafiq, R. and Ali,

S.A. (2010) PSO based test coverage analysis for event

driven software, 2nd International Conference on

Software Engineering and Data Mining (SEDM), Pp.

219-224.

[2]. Adams, M.M. and Grib, T.E. (1999) A component based,

event driven framework for rapid prototyping real-time

avionics systems, Proceedings. 18th Digital Avionics

Systems Conference, Vol. 2, Pp. 9.C.5-1 - 9.C.5-8.

[3]. Arlt, S., Bertolini, C. and Schaf, M. (2011) Behind the

Scenes: An Approach to Incorporate Context in GUI Test

Case Generation, Proceedings of the 2011 IEEE Fourth

International Conference on Software Testing,

Verification and Validation Workshops (ICSTW '11).

IEEE Computer Society, Washington, DC, USA, Pp.

222-231.

[4]. Bryce, R.C. and Menon, A.F. (2007) Test Suite

Prioritization by Interaction Coverage, Proceeding of

Workshop on Domain specific approaches to software

test automation in conjunction with the 6th ESEC/FSE

joint meeting, ACM, New York, Pp. 1-7.

[5]. Gong, H., Liu, M., Yu, L. and Wang, X. (2009) An Event

Driven TDMA Protocol for Wireless Sensor Networks,

WRI International Conference on Communications and

Mobile Computing, Vol. 2, Pp. 132-136.

[6]. Gove, R. and Faytong, J. (2012) Identifying Infeasible

GUI Test Cases Using Support Vector Machines and

Induced Grammars, IEEE Fourth International

Conference on Software Testing, Verification and

Validation Workshops (ICSTW), Pp. 202 - 211

[7]. Gu, Z. and Shin, K.G. (2005) Model-checking of

component-based event-driven real-time embedded

software, Eighth IEEE International Symposium on

Object-Oriented Real-Time Distributed Computing, Pp.

410-417

[8]. Hendrick, S.D., Hendrick, K.E. and Webster, M. (2005)

Worldwide Distributed Automated Software Quality

Tools 2005–2009 Forecast and 2004 Vendor Shares, IDS

Software Research Group.

[9]. Isabella, A. and Retna, E. (2012) Study paper on test case

generation for gui based testing, International Journal of

Software Engineering and Applications (IJSEA), Vol.3,

No.1, Pp. 139-147.

[10].Kuhn, D.R., Wallace, D.R. and Gallo, A.M. (2004)

Software fault interactions and implications for software

testing, IEEE Transactions on Software Engineering,

Vol.30, No.6, Pp.418–421.

[11]. Kumar, A. and Goel, R. (2012) Event driven test case

selection for regression testing web applications,

International Conference on Advances in Engineering,

Science and Management (ICAESM), Pp. 121-127.

[12]. Memon, A.M. (2007) An event-flow model of GUI-

based applications for testing, Journal of Software

Testing, Verification and Reliability, Vol. 17, Issue 3,

Pp. 137-157.

[13].Myers, B.A. (1995) User Interface Software Tools, ACM

Transaction Computer Human Interact, Volume 2, Issue

1, Pp. 64–103.

[14]. Tchamgoue, G.M., Kim, K.H. and Jun, Y.K. (2012)

Testing and Debugging Concurrency Bugs in Event-

Driven Programs, International Journal of Advanced

Science and Technology, Vol. 40, Pp. 55-68.

[15].TerpOffice(2009),http://www.cs.umd.edu/~atif/TerpOffic

eWeb, Last Access Date : 01-01-2013.

[16]. Xiaochun, Z., Bo, Z., Juefeng, L. and Qiu, G. (2008) A

test automation solution on GUI functional test,

Proceedings of the 6th IEEE International Conference on

Industrial Informatics, INDIN, Pp. 1413–1418.

[17]. Zhao, N.Y. and Shum, M.W. (2006) Technical Solution

to Automate Smoke Test Using Rational Functional

Tester and Virtualization Technology, Computer

Software and Applications Conference, COMPSAC '06,

Vol. 2, Pp. 367–367.

