DOI QR코드

DOI QR Code

InP Quantum Dot-Organosilicon Nanocomposites

  • Dung, Mai Xuan (Department of Chemistry, Chonnam National University) ;
  • Mohapatra, Priyaranjan (Department of Chemistry, Chonnam National University) ;
  • Choi, Jin-Kyu (Department of Chemistry, Chonnam National University) ;
  • Kim, Jin-Hyeok (Department of Material Science and Engineering, Chonnam National University) ;
  • Jeong, So-Hee (Nanomechanical Systems Research Division, Korea Institute of Machinery and Materials) ;
  • Jeong, Hyun-Dam (Department of Chemistry, Chonnam National University)
  • Received : 2011.10.22
  • Accepted : 2012.02.01
  • Published : 2012.05.20

Abstract

InP quantum dot (QD)-organosilicon nanocomposites were synthesized and their photoluminescence quenching was mainly investigated because of their applicability to white LEDs (light emitting diodes). The as-synthesized InP QDs are capped with myristic acid (MA), which are incompatible with typical silicone encapsulants. We have introduced a new ligand, 3-aminopropyldimethylsilane (APDMS), which enables embedding the QDs into vinyl-functionalized silicones through direct chemical bonding. The exchange of ligand from MA to APDMS does not significantly affect the UV absorbance of the InP QDs, but quenches the PL to about 10% of its original value with the relative increase in surface related emission intensities, which is explained by stronger coordination of the APDMS ligands to the surface indium atoms. InP QD-organosilicon nanocomposites were synthesized by connecting the QDs using a short cross-linker such as 1,4-divinyltetramethylsilylethane (DVMSE) by the hydrosilylation reaction. The formation and changes in the optical properties of the InP QD-organosilicon nanocomposite were monitored by ultraviolet visible (UV-vis) absorbance and steady state photoluminescence (PL) spectroscopies. As the hydrosilylation reaction proceeds, the QD-organosilicon nanocomposite is formed and grows in size, causing an increase in the UV-vis absorbance due to the scattering effect. At the same time, the PL spectrum is red-shifted and, very interestingly, the PL is quenched gradually. Three PL quenching mechanisms are regarded as strong candidates for the PL quenching of the QD nanocomposites, namely the scattering effect, F$\ddot{o}$rster resonance energy transfer (FRET) and cross-linker tension preventing the QD's surface relaxation.

Keywords

References

  1. Mcguire, J. A.; Joo, J.; Pietryga, R. M.; Schaller, R. D.; Klimov, V. I. Acc. Chem. Res. 2008, 41, 1810. https://doi.org/10.1021/ar800112v
  2. Dai, Q.; Duty, C. E.; Hu, M. Z. Small 2010, 6, 1577. https://doi.org/10.1002/smll.201000144
  3. Xie, R.; Battaglia, D.; Peng, X. J. Am. Chem. Soc. 2007, 129, 15432. https://doi.org/10.1021/ja076363h
  4. Battaglia, D.; Peng, X. Nano Lett. 2002, 2, 1027. https://doi.org/10.1021/nl025687v
  5. Li, L.; Protière.; Reiss, P. Chem. Mater. 2008, 20, 2621. https://doi.org/10.1021/cm7035579
  6. Su, H.; Xu, H.; Gao, S.; Dixon, J. D.; Aguilar, Z. P.; Wang, A. Y.; Xu, J.; Wang, J. Nanoscale Res. Lett. 2010, 5, 625. https://doi.org/10.1007/s11671-010-9525-1
  7. Baek, Jinyoung.; Allen, P. M.; Bawendi, M. G.; Jensen, K. F. Angew. Chem. Int. Ed. 2011, 50, 627. https://doi.org/10.1002/anie.201006412
  8. Li, L.; Reiss, P. J. Am. Chem. Soc. 2008, 130, 11588. https://doi.org/10.1021/ja803687e
  9. Xi, S.; Ziegler, J.; Nann, T. J. Mater. Chem. 2008, 18, 2653. https://doi.org/10.1039/b803263g
  10. Wang, X.; Ren, X.; Kahen, K.; Hahn, E. A.; Rajeswaran, M.; Zacher-M, S.; Silcox, J.; Cragg, G. E.; Efros, A. L.; Krass, T. D. Nature 2009, 459, 686. https://doi.org/10.1038/nature08072
  11. Nie, S.; Smith, A. M. Nat. Biotechnol. 2009, 27, 732. https://doi.org/10.1038/nbt0809-732
  12. Schlotter, S.; Schmidt, R.; Schneider, J. Apll. Phys. A 1997, 64, 417. https://doi.org/10.1007/s003390050498
  13. Narukawa, Y. White-light LEDs. Opt. Photonics News 2004, 15(4), 24. https://doi.org/10.1364/OPN.15.12.000024
  14. Schubert, E. F. Light-Emitting Diodes, 2nd ed.; Cambridge University Press: New York, 2006.
  15. Norris, A. W.; Bahadur, M.; Yoshitake, M. Proc. of SPIE. 2005, 5941, 594115-1.
  16. Choi, J. K.; Lee, D.-H.; Rhee, S. K.; Jeong, H. D. J. Phys. Chem. C 2010, 114, 14233. https://doi.org/10.1021/jp909287f
  17. Schreuder, A. M.; Gosnell, D. J.; Smith, J. N.; Warnement, R. M.; Weiss, M. S.; Rosenthal, J. S. J. Mater. Chem. 2008, 18, 970. https://doi.org/10.1039/b716803a
  18. Barton, A. F. M. CRC Handbook of Polymer-Liquid Interaction Parameters and Solubility Parameters; CRC Press, Inc: Florida, 1990.
  19. Gagneux, A. C.; Delpech, F.; Nayral, C.; Cornejo, A.; Coppel, Y.; Chaudret, B. J. Am. Chem. Soc. 2010, 132, 18147. https://doi.org/10.1021/ja104673y
  20. Li, C.; Ando, M.; Enomoto, H.; Murase, N. J. Phys. Chem. C 2008, 112, 20190. https://doi.org/10.1021/jp805491b
  21. Ziegler, J.; Xu, S.; Kucur, E.; Meister, F.; Batentschuk, M.; Gindele, F.; Nann, T. Adv. Mater. 2008, 20, 4068. https://doi.org/10.1002/adma.200800724
  22. Lafaurie, A.; Azema, N.; Ferry, L.; Cuesta-L, J. Powder Technol. 2009, 192, 92. https://doi.org/10.1016/j.powtec.2008.11.018
  23. Kuno, M.; Lee, J. K.; Dabbousi, B. O.; Mikulec, F. V.; Bawendi, M. G. J. Chem. Phys. 1997, 106, 9869. https://doi.org/10.1063/1.473875
  24. Sharma, S. N.; Shrma, H.; Singh, G.; Shivaprasad, S. M. Mater. Chem. Phys. 2008, 110, 471. https://doi.org/10.1016/j.matchemphys.2008.02.038
  25. Landes, C. F.; Braun, M.; El- Sayed, M. A. J. Phys. Chem. B 2001, 105, 10554. https://doi.org/10.1021/jp0118726
  26. Landes, C.; Burda, C.; El-Sayed, M. A. J. Phys. Chem. B 2001, 105, 2981. https://doi.org/10.1021/jp0041050
  27. Blackburn, J. L.; Selmarten, D. C.; Ellingson, R. J.; Jones, M.; Micic, O.; Nozik, A. J. J. Phys. Chem B 2005, 109, 2625. https://doi.org/10.1021/jp046781y
  28. Darugar, Q.; Landes, C.; Link, S.; Schill, A.; El-Sayed, M. A. Chem. Phys. Lett. 2003, 373, 284-291. https://doi.org/10.1016/S0009-2614(03)00213-6
  29. McCafferty, E. Introduction to Corrosion Science; Springer: New York, 2010; p 364.
  30. Xu, S.; Klama, F.; Ueckermann, H.; Hoogewerff, J.; Clayden, N.; Nann,T. Sci. Adv. Mater. 2009, 1, 125. https://doi.org/10.1166/sam.2009.1035
  31. Frisch, M. J.; Gaussian03; Gaussian, Inc.: Wallingford, CT, 2005.
  32. Raghavachari, K.; Fu, Q.; Chen, G.; Li, L.; Li, C. H.; Law, D. C.; Hicks, R. F. J. Am. Chem. Soc. 2002, 124, 15119. https://doi.org/10.1021/ja020348p
  33. Filonovich, S. A.; Rakovich, Y. P.; Vasilevskiy, M. I.; Artemyev, M. V.; Talapin, D. V.; Logach, A. L.; Rolo, A. G.; Gomes, M. J. M. Monatsh. Chem. 2002, 133, 909. https://doi.org/10.1007/s007060200061
  34. Ishii, S.; Ueji, R.; Nakanishi, S.; Yoshida, Y.; Nagata, H.; Itoh, T.; Ishikawa, M.; Biju, V. J. Photochem. Photobio. A 2006, 183, 285. https://doi.org/10.1016/j.jphotochem.2006.06.038
  35. Muller, M. G.; Georgakoudi, I.; Zhang, Q.; Wu, J.; Feld, M. S. Appl. Opt. 2001, 40, 4633. https://doi.org/10.1364/AO.40.004633
  36. Boev, V. I.; Filonovich, S. A.; Vasilevskiy, M. I.; Silva, C. J.; Gomes, M. J. M.; Talapin, D. V.; Rogach, A. L. Physica B 2003, 338, 347. https://doi.org/10.1016/j.physb.2003.08.018
  37. Vasilevskiy, M. I.; Rolo, A. G.; Artemyev, M. V.; Filonovich, S. A.; Gomes, M. J. M.; Rakovich, Y. P. Phys. Status Solidi B 2001, 224, 599. https://doi.org/10.1002/1521-3951(200103)224:2<599::AID-PSSB599>3.0.CO;2-K
  38. Micic, O. I.; Ahrenkiel, S. P.; Nozik, A. J. Appl. Phys. Lett. 2001, 78, 4022. https://doi.org/10.1063/1.1379990
  39. Lazarenkova, O. L.; Banlandin, A. A. J. Appl. Phys. 2001, 89, 5509. https://doi.org/10.1063/1.1366662
  40. Koole, R.; Liljeroth, P.; Donega, C. M.; Vanmaekelbergh, D.; Meijerink, A. J. Am. Chem. Soc. 2006, 128, 10436. https://doi.org/10.1021/ja061608w
  41. Koole, R.; Luigjes, B.; Tachiya, M.; Pool, R.; Vlugt, T. J. H.; de Mello Donega, C.; Meijerink, A.; Vanmaekelbergh, D. J. Phys. Chem. C 2007, 111, 11208. https://doi.org/10.1021/jp072407x
  42. Rogach, A. L. Semiconductor Nanocrystal Quantum Dots: Synthesis, Assembly, Spectroscopy and Applications; Springer Wien New York: Wien, 2008; p 277-310.
  43. Wuister, S. F.; Houselt, A. V.; Donega, C. D. M.; Vanmaekelbergh, D.; Meijerink, A. Angew. Chem. 2004, 116, 3091. https://doi.org/10.1002/ange.200353532
  44. Wuister, S.; Donega, C. D. M.; Meijerink, A. J. Am. Chem. Soc. 2004, 126, 10397. https://doi.org/10.1021/ja048222a
  45. Puzder, A.; Williamson, A. J.; Gygi, F.; Galli, G. Phys. Rev. Lett. 2004, 92, 217401. https://doi.org/10.1103/PhysRevLett.92.217401
  46. Talapin, D. V.; Lee, J.-S.; Kovalenko, M. V.; Shevchenko, E. V. Chem. Rev. 2010, 110, 389. https://doi.org/10.1021/cr900137k
  47. Leatherdale, C. A.; Kagan, C. R.; Morgan, N. Y.; Empedocles, S. A.; Kastner, M. A.; Bawendi, M. G. Chem. Rev. B 2000, 62, 2669.

Cited by

  1. Newly Synthesized Silicon Quantum Dot–Polystyrene Nanocomposite Having Thermally Robust Positive Charge Trapping vol.5, pp.7, 2013, https://doi.org/10.1021/am400356r
  2. Surface Functionalization of Silica by Si–H Activation of Hydrosilanes vol.136, pp.33, 2014, https://doi.org/10.1021/ja504115d
  3. Small-Size Effects on Electron Transfer in P3HT/InP Quantum Dots vol.119, pp.47, 2015, https://doi.org/10.1021/acs.jpcc.5b09397
  4. Preparation of quantum dot/polymer light conversion films with alleviated Förster resonance energy transfer redshift vol.3, pp.1, 2015, https://doi.org/10.1039/C4TC02201G
  5. Synthesis and properties of colloidal indium phosphide quantum dots vol.77, pp.4, 2015, https://doi.org/10.1134/S1061933X15040043