Construction of Ag₂S@CaTiO₃ heterostructure photocatalysts for enhanced photocatalytic degradation of dyes

Yuxiang Yan^a, Hua Yang^{a,*}, Zao Yi^b, Tao Xian^c, Ruishan Li^a, Xiangxian Wang^a

^aState Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China, Tel. +86 931 2973783; Fax: +86 931 2976040; emails: hyang@lut.edu.cn (H. Yang), yanyx@lut.cn (Y.X. Yan), liruishan@lut.cn (R.S. Li), wangxx869@lut.edu.cn (X.X. Wang)

^bJoint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China, email: yizaomy@swust.edu.cn

^cCollege of Physics and Electronic Information Engineering, Qinghai Normal University, Xining 810008, China, email: xiantao1985@126.com

Received 18 April 2019; Accepted 24 July 2019

ABSTRACT

In this work, we have assembled Ag₂S carbon quantum dots (CQDs) onto CaTiO₃ nanocuboids (NCs), aimed at creating Ag₂S@CaTiO₃ composite photocatalysts with superior photocatalytic performances. Scanning/transmission electron microscopy observation confirms the uniform decoration of Ag₂S CQDs (7–17 nm) on the surface of CaTiO₃ NCs with size of 0.8–1.1 µm in length and 0.3–0.5 µm in width. Photoluminescence, photocurrent response and electrochemical impedance spectroscopy investigations reveal that the Ag₂S@CaTiO₃ composites manifest highly efficient separation of photoexcited electron/hole pairs. The photocatalytic degradation activity of the Ag₂S@CaTiO₃ composites was assessed by the removal of rhodamine B from aqueous solution. It is demonstrated that the composites exhibit photocatalytic degradation performance much superior to that of bare Ag₂S CQDs and CaTiO₃ NCs under ultraviolet irradiation. This can be explained as the result of efficient separation of photoexcited electron/hole pairs induced by the Z-scheme electron transfer. In addition, the composites also manifest enhanced visible-light photocatalytic performance when compared with bare CaTiO₃ NCs, implying that they can make the best use of the solar energy in the practical photocatalytic applications.

Keywords: CaTiO₃ nanocuboids; Ag₂S quantum dots; Ag₂S@CaTiO₃ composites; Photocatalytic degradation performance; Z-scheme electron transfer

* Corresponding author.

1944-3994/1944-3986 © 2019 Desalination Publications. All rights reserved.