Simultaneous bioaccumulation and translocation of iron and aluminium from mining wastewater by *Scirpus grossus*

Nur 'Izzati Ismail^{a,*}, Siti Rozaimah Sheikh Abdullah^a, Mushrifah Idris^b, Hassimi Abu Hasan^a, Mohd Izuan Effendi Halmi^c, Nadya Hussin Al Sbani^d, Omar Hamed Jehawi^a

^aDepartment of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia, Tel. +603-89216407; Fax: +603-89216148; emails: ezaty_ismail@yahoo.com (N.I. Ismail), rozaimah@ukm.edu.my (S.R.S. Abdullah)

^bTasik Chini Research Center, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia ^cDepartment of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia ^dDepartment of Chemical Engineering, Faculty of Oil and Gas Engineering, Al Zawiya University, Libya

Received 20 September 2018; Accepted 6 January 2019

ABSTRACT

Iron (Fe) and aluminium (Al) contamination due to mining activities has increased considerably and became a serious environmental problem. Phytoremediation is an emerging green technology that uses plants to treat heavy metal contaminated environment. In this study, *Scirpus grossus* was exposed to synthetic mining wastewater (binary mixture of Fe and Al with a mass ratio of 3:1) to assess its ability to phytoremediate Fe and Al with different treatment concentrations (90 mg/L Fe + 30 mg/L Al – 450 mg/L Fe + 150 mg/L Al). The plants were exposed for 102 d in a subsurface batch system. The results show that the *S. grossus* accumulated Fe and Al simultaneously in biomass throughout the study. The maximum accumulations of Fe and Al were found on Day 42 in the plant roots (50,277 mg/kg Fe in 450 mg/L Fe + 150 mg/L Al treatment and 7,744 mg/kg Al in 300 mg/L Fe + 100 mg/L Al treatment). The bioaccumulation factor and translocation factor of *S. grossus* were found to be greater than 1 and less than 1, respectively, for the two metals, indicating that this species is a hyperaccumulator that uses phytostabilization in the phytoremediation of Fe and Al.

Keywords: Phytoremediation; Bioaccumulation; Translocation; Heavy metals; Mining wastewater; *Scirpus grossus*

* Corresponding author.