Home / Regular Issue / JTAS Vol. 45 (2) May. 2022 / JTAS-2386-2021

 

Zebrafish Embryotoxicity and Teratogenic Effects of Christia vespertilionis Leaf Extract

Anis Irfan Norazhar, Wan Norhamidah Wan Ibrahim, Nur Atikah Saleh Hodin, Siti Munirah Mohd Faudzi and Khozirah Shaari

Pertanika Journal of Tropical Agricultural Science, Volume 45, Issue 2, May 2022

DOI: https://doi.org/10.47836/pjtas.45.2.01

Keywords: Christia vespertilionis, embryotoxicity, methanolic extract, teratogenic effects

Published on: 13 May 2022

Christia vespertilionis or butterfly wings is a traditional medicinal plant used to treat, among others, colds and bronchitis. The plant was also reported to be a remedy for cancer, with several products based on the plant becoming commercially available, raising some safety concerns on its consumption. The present study was carried out to assess the toxic and teratogenic effects of the plant on the embryonic development of zebrafish (Danio rerio) as the animal model. Zebrafish embryos were exposed to 50, 100, 200, 400, and 800 μg/mL of the methanolic leaf extract of C. vespertilionis, starting from 5 to 120 hours post-fertilization (hpf). The median lethal concentration (LC50) value of the extract was determined to be 419.84 μg/mL, which is within the safety limit stipulated by the Organisation for Economic Co-operation and Development (OECD) guideline. However, results from the teratogenicity evaluation revealed multiple signs of developmental defects in embryos exposed to 200 μg/mL and higher concentrations of the extract. The magnitude of the defects was observed to be concentration-dependent. Moreover, no hatching and spontaneous movement of tail coiling were observed at 400 and 800 μg/mL concentrations due to the delayed growth and early mortality, respectively. A significant reduction in heartbeat rate was also reported for the surviving embryos at the 400 μg/mL test concentration. The present study has provided preliminary results on the potentially toxic and teratogenic effects of the extract at high concentrations.

  • Abd Latip, N., & Abd Mutalib, N. (2019). Synergistic interactions between Christia vespertilionis leaves extract and chemotherapy drug cyclophosphamide on WRL-68 cell line. Asian Journal of Pharmaceutical Research and Development, 7(3), 109–113. https://doi.org/10.22270/ajprd.v7i3.488

  • Alafiatayo, A. A., Lai, K., Syahida, A., Mahmood, M., & Shaharuddin, N. A. (2019). Phytochemical evaluation, embryotoxicity, and teratogenic effects of Curcuma longa extract on zebrafish (Danio rerio). Evidence-Based Complementary and Alternative Medicine, 2019, 3807207. https://doi.org/10.1155/2019/3807207

  • Bezerra, A. G., Negri, G., Duarte-Almeida, J. M., Smaili, S. S., & Carlini, E. A. (2016). Phytochemical analysis of hydroethanolic extract of Turnera diffusa Willd and evaluation of its effects on astrocyte cell death. Einstein (São Paulo), 14(1), 56–63. https://doi.org/10.1590/S1679-45082016AO3386

  • Caballero, M. V., & Candiracci, M. (2018). Zebrafish as screening model for detecting toxicity and drugs efficacy. Journal of Unexplored Medical Data, 3, 4. https://doi.org/10.20517/2572-8180.2017.15

  • Chandra, S. J, Sandhya, S., Vinod, K. R., David, B., Sudhakar, K., & Chaitanya, R. (2012). Plant toxins-useful and harmful effects. Hygeia Journal for Drug and Medicines, 4(1),79-90.

  • Chen, L., Xu, M., Gong, Z., Zonyane, S., Xu, S., & Makunga, N. P. (2018). Comparative cardio and developmental toxicity induced by the popular medicinal extract of Sutherlandia frutescens (L.) R.Br. detected using a zebrafish Tuebingen embryo model. BMC Complementary and Alternative Medicine, 18(1), 273. https://doi.org/10.1186/s12906-018-2303-9

  • Clark, T. S., Pandolfo, L. M., Marshall, C. M., Mitra, A. K., & Schech, J. M. (2018). Body condition scoring for adult zebrafish (Danio rerio). Journal of the American Association for Laboratory Animal Science, 57(6), 698-702. https://doi.org/10.30802/AALAS-JAALAS-18-000045

  • Dash, G. K. (2016). An appraisal of Christia vespertilionis (L. f.) Bakh. f.: A promising medicinal plant. International Journal of Pharmacognosy and Phytochemical Research, 8(6), 1037-1039.

  • De Luca, E., Zaccaria, G. M., Hadhoud, M., Rizzo, G., Ponzini, R., Morbiducci, U., & Santoro, M. M. (2014). ZebraBeat: A flexible platform for the analysis of the cardiac rate in zebrafish embryos. Scientific Reports, 4, 4898. https://doi.org/10.1038/srep04898

  • Doerge, D. R., & Divi, R. L. (1995). Porphyrin π-cation and protein radicals in peroxidase catalysis and inhibition by anti-thyroid chemicals. Xenobiotica, 25(7), 761–767. https://doi.org/10.3109/00498259509061891

  • Du, W. Y., Xiao, Y., Yao, J. J., Hao, Z., & Zhao, Y. B. (2017). Involvement of NADPH oxidase in high-dose phenolic acid-induced pro-oxidant activity on rat mesenteric venules. Experimental and Therapeutic Medicine, 13(1), 17–22. https://doi.org/10.3892/etm.2016.3923

  • Finney, D. J. (1971). Probit analysis. Cambridge University Press.

  • Gaitan, E., Lindsay, R. H., Reichert, R. D., Ingbar, S. H., Cooksey, R. C., Legan, J., Meydrech, E. F., Hill, J., & Kubota, K. (1989). Antithyroid and goitrogenic effects of millet: Role of C-glycosylflavones. The Journal of Clinical Endocrinology and Metabolism, 68(4), 707–714. https://doi.org/10.1210/jcem-68-4-707

  • Gao, X. P., Feng, F., Zhang, X. Q., Liu, X. X., Wang, Y. B., She, J. X., He, Z. H., & He, M. F. (2014). Toxicity assessment of 7 anticancer compounds in zebrafish. International Journal of Toxicology, 33(2), 98–105. https://doi.org/10.1177/1091581814523142

  • Ghasemzadeh, A., Jaafar, H. Z., & Rahmat, A. (2015). Phytochemical constituents and biological activities of different extracts of Strobilanthes crispus (L.) Bremek leaves grown in different locations of Malaysia. BMC Complementary and Alternative Medicine, 15(1), 422. https://doi.org/10.1186/s12906-015-0873-3

  • Hofer, D., Schwach, G., Ghaffari Tabrizi-Wizsy, N., Sadjak, A., Sturm, S., Stuppner, H., & Pfragner, R. (2013). Christia vespertilionis plant extracts as novel antiproliferative agent against human neuroendocrine tumor cells. Oncology reports, 29(6), 2219–2226. https://doi.org/10.3892/or.2013.2367

  • Howe, K., Clark, M. D., Torroja, C. F., Torrance, J., Berthelot, C., Muffato, M., Collins, J. E., Humphray, S., McLaren, K., Matthews, L., McLaren, S., Sealy, I., Caccamo, M., Churcher, C., Scott, C., Barrett, J. C., Koch, R., Rauch, G.-J., White, S., ... Stemple, D. L. (2013). The zebrafish reference genome sequence and its relationship to the human genome. Nature, 496(7446), 498-503. http://doi.org/10.1038/nature12111

  • Hussin, A. H. (2001). Adverse effects of herbs and drug-herbal interactions. Malaysian Journal of Pharmacy, 1(2), 39–44.

  • Ismail, H. F., Hashim, Z., Soon, W. T., Rahman, N., Zainudin, A. N., & Majid, F. (2017). Comparative study of herbal plants on the phenolic and flavonoid content, antioxidant activities and toxicity on cells and zebrafish embryo. Journal of Traditional and Complementary Medicine, 7(4), 452–465. https://doi.org/10.1016/j.jtcme.2016.12.006

  • Jayasinghe, C. D., & Jayawardena, U. A. (2019). Toxicity assessment of herbal medicine using zebrafish embryos: A systematic review. Evidence-Based Complementary and Alternative Medicine, 2019, 7272808. https://doi.org/10.1155/2019/7272808

  • Kinna, G., Kolle, G., Carter, A., Key, B., Lieschke, G. J., Perkins, A., & Little, M. H. (2008). Knockdown of zebrafish crim1 results in a bent tail phenotype with defects in somite and vascular development. Mechanisms of Development, 123(4), 277–287. http://doi.org/10.1016/j.mod.2006.01.003

  • Lee, J. J., Saiful Yazan, L., Kassim, N. K., Che Abdullah, C. A., Esa, N., Lim, P. C., & Tan, D. C. (2020). Cytotoxic activity of Christia vespertilionis root and leaf extracts and fractions against breast cancer cell lines. Molecules, 25(11), 2610. https://doi.org/10.3390/molecules25112610

  • Maes, J., Verlooy, L., Buenafe, O. E., de Witte, P. A., Esguerra, C. V., & Crawford, A. D. (2012). Evaluation of 14 organic solvents and carriers for screening applications in zebrafish embryos and larvae. PLOS One, 7(10), e43850. https://doi.org/10.1371/journal.pone.0043850

  • Martin, K. R., & Appel, C. L. (2009). Polyphenols as dietary supplements: A double-edged sword. Dove Press, 2, 1-12. https://doi.org/10.2147/NDS.S6422

  • Moser, V. C. (2011). Functional assays for neurotoxicity testing. Toxicologic Pathology, 39(1), 36-45. https://doi.org/10.1177/0192623310385255

  • Murugesu, S., Perumal, V., Balan, T., Fatinanthan, S., Khatib, A., Arifin, N. J., Shukri, N. S. S. M., Saleh, M. S. M., & Hin, L. W. (2020). The investigation of antioxidant and antidiabetic activities of Christia vespertilionis leaves extracts. South African Journal of Botany, 133, 227–235. https://doi.org/10.1016/j.sajb.2020.07.015

  • Murugesu, S., Uddin, Q., Ibrahim, Z., Fathamah, B., Benchoula, K., Idris, N., & El-Seedi, H. R. (2019). Toxicity study on Clinacanthus nutans leaf hexane fraction using Danio rerio embryos. Toxicology Reports, 6, 1148–1154. https://doi.org/10.1016/j.toxrep.2019.10.020

  • Nguyen-Pouplin, J., Tran, H., Tran, H., Phan, T. A., Dolecek, C., Farrar, J., Tran, T. H., Caron, P., Bodo, B., & Grellier, P. (2007). Antimalarial and cytotoxic activities of ethnopharmacologically selected medicinal plants from South Vietnam. Journal of Ethnopharmacology, 109(3), 417–427. https://doi.org/10.1016/j.jep.2006.08.011

  • Norazhar, A. I., Lee, S. Y., Faudzi, S. M. M., & Shaari, K. (2021). Metabolite profiling of Christia vespertilionis leaf metabolome via molecular network approach. Applied Sciences, 11(8), 1-29. https://doi.org/10.3390/app11083526

  • Nurul, S., Hazilawati, H., Mohd, R. S., Mohd, F., Noordin, M. M., & Norhaizan, M. E. (2018). Subacute oral toxicity assesment of ethanol extract of Mariposa christia vespertilionis leaves in male Sprague Dawley rats. Toxicological Research, 34(2), 85–95. https://doi.org/10.5487/TR.2018.34.2.085

  • Organisation for Economic Co-operation and Development. (2013). Fish Embryo Acute Toxicity (FET) test. OECD Publishing. https://doi.org/10.1787/9789264203709-en

  • Pamanji, R., Yashwanth, B., Bethu, M. S., Leelavathi, S., Ravinder, K., & Rao, J. V. (2015). Toxicity effects of profenofos on embryonic and larval development of zebrafish (Danio rerio). Environmental Toxicology and Pharmacology, 39(2), 887–897. http://doi.org/10.1016/j.etap.2015.02.020

  • Saint-Amant, L., & Drapeau, P. (1998). Time course of the development of motor behaviors in the zebrafish embryo. Journal of Neurobiology, 37(4), 622–632. http://doi.org/10.1002/(sici)1097-4695(199812)37:4<622::aid-neu10>3.0.co;2-s

  • Thiagarajan, S. K., Krishnan, K. R., Ei, T., Shafie, N. H., Arapoc, D. J., & Bahari, H. (2019). Evaluation of the effect of aqueous Momordica charantia Linn. extract on zebrafish embryo model through acute toxicity assay assessment. Evidence-Based Complementary and Alternative Medicine, 2019, 9152757. https://doi.org/10.1155/2019/9152757

  • Zakaria, A. (2015, March 13). UPM runs stage two of anti-cancerous red butterfly wing research. UPM News. https://upm.edu.my/content/upm_runs_stage_two_of_anti_cancerous_red_butterfly_wing_research-25072

  • Zhang, C., Willett, C., & Fremgen, T. (2003). Zebrafish: An animal model for toxicological studies. Current Protocols in Toxicology, 17(1), 1-7. https://doi.org/10.1002/0471140856.tx0107s17

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

JTAS-2386-2021

Download Full Article PDF

Share this article

Recent Articles