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In the paper, the Braginskii equations for relativistic electrons in hot plasmas with slow macroscopic fluxes are 

derived. This consideration is suitable for description of the typical fusion plasma with the temperatures of about 

several tens of kiloelectronvolt, when the plasma rotation and the longitudinal currents should be taken into account. 

Contrary to other papers devoted to classical description of transport processes in fusion devices, as well as to fully 

relativistic description of the astrophysical objects, we propose the mixed approach with fully relativistic kinetics for 

the hot electrons and non-relativistic macroscopic fluxes. The obtained form of the Braginskii equations includes all 

important features of relativistic hydrodynamics, has the same form as the classical representation, which is 

currently implemented into modern transport codes, and can easily replace the latter. 
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INTRODUCTION 
 

     Due to the progress in fusion research in last decades 

[1-4], the typical temperature of amagnetically confined 

plasma in large tokamaks and stellarators can already 

reach the range of 10…20 keV. In next-generation 

fusion projects, such as the ITER [5] and DEMO [6] 

tokamaks the temperatures should be even higher, up to 

60 keV, depending on the scenario. 

 Formally, each scenario mentioned above satisfies 

the condition       
 . At the same time, there are 

many effects and processes in which relativistic effects 

make a non-negligible contribution and must be taken 

into account. For example, physics of electron cyclotron 

heating and current drive [7] and radiation losses in hot 

plasmas [8]. 

In addition, in the ''inertial fusion'' [9], when a 

plasma is created by a short laser pulse of extremely 

high power, the energies of electrons in exploding 

plasma streams can reach hundreds of keV, which is 

already quite relativistic. 

It is also important to mention the projects of a 

neutronic fusion [10-12], based on the reactions D ‒ He
3
 

and      , in which temperatures of the order of 

50...70 keV (and even higher)should be maintained, 

which requires a fully relativistic description. 

In general, the basic theory for describing relativistic 

plasmas is well developed, see [13, 14]. A number of 

theoretical studies of relativistic kinetic and transport 

have been carried out. Usually, attention is focused on 

astrophysical objects [15], where a fully relativistic 

description is required and it is common to apply the 

covariant formalism with the 4-vectors in the 

Minkowski space [14]. In particular, in the literature one 

can find papers devoted to the description of fully 

relativistic and ultra-relativistic plasmas and plasma 

with flows; see, for example, [16]. In addition, fully 

relativistic hydrodynamic has already been developed 

[17]. At the same time, the plasma generated in 

laboratory, for example in fusion devices, does not 

require such a formalism and can be well described 

without refence to the Lorentz invariance [18-21]. The 

present paper deals with the case of quite practical 

needs and the results obtained here can be easily 

implemented in any transport code. 

Below, we consider a quite typical situation in 

fusion plasmas where the macroscopic flows exist. 

These flows can be associated with plasmarotation or 

longitudinal electriccurrent in the magnetized plasmas. 

The main feature of this kind of flows is that       

and      . In other words, hot plasma electrons can be 

relativistic, while the flows are characterized by the 

classical velocities.  

There are two ways to find the optimal model for 

describing transport processes in such plasmas: i) start 

with a fully relativistic model obtained with Lorentz 

invariance (see, for example, [16]) and reduce it to the 

required level; and ii) derive it directly from the 

relativistic kinetic equations using Braginskii’s method 

and only those effects that need to be considered. We 

have found the second method to be simpler and more 

convenient. 

The resulting equations like any other chain of 

equations for the moments [22, 23] must be closed. This 

means that in orderto solve the resulting system of 

equations, it is first necessary to calculate the moments 

in the rest frame. This can be done by solving the 

linearized kinetic equation with respect to    . 

However, this task is not considered here. 

Below, we derive the Braginskii equations for hot 

plasmas with relativistic electrons and non-relativistic 

macroscopic fluxes. 

 

1. DRIFTING JÜTTNER-MAXWELLIAN 

AND QUASI-RELATIVISTIC GALILEAN 

TRANSFORMATION 
 

We start from the standard relativistic kinetic 

equation for electrons in plasmas which can be written 

as following [14], 

where    – the electron distribution function, 

    – the moment of electron per unit mass and 
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  √       ,   and B – the electric and magnetic 

fields, respectively,                       –
relativistic Coulomb collisional operator which 

describes the collisions of electrons with themselves and 

with the ions. Generally, in Eq. (1) also the external 

sources of particles and energy,     , has to be 

accounted. However, since it seems rather a trivial 

point, we omit this term here and mention it below only 

if necessary.  

Formally, in order to derive the equations for the set 

of moments of the distribution function, we do not have 

to solve the Eq. (1). However, this solution is required 

in order to close the system of transport equations. Since 

the closure is not the point of this paper, we only briefly 

discuss the features of   . 

The object of our investigation are quite slow 

processes with characteristic times sufficient for 

relaxation of plasmas to the thermodynamic 

equilibrium. As consequence, we can suppose that the 

ions are well described by the (classical) Maxwellian, 

while the electrons may have only small deviations from 

the equilibria. As usually, all these deviations are 

induced by the thermodynamic forces (plasma 

parameters gradients) and the external forces. As 

consequence, the electron distribution function can be 

represented in standard form,           , where     

– small deviation from the drifting Jüttner-Maxwellian, 

 
where   – the macroscopic flux velocity of electrons 

and                  - the respective relativistic 

factor,            – the thermal moment per unit 

mass with            
    (    seems equal to the 

thermal velocity, but it is notlimited by the speed of 

light), and        
    . Here and below, we apply 

the rule of summation over the repetitive indexes. The 

normalizing factor is, respectively 

 
where      is the modified Bessel function of second 

kind. 

The form of representation of     in Eq. (2) is 

chosen in such a way that a recovering of the classical 

(drifting) Maxwellian in the case of both       
    

and         would be most evident.  

The relation between     and     is chosen in such a 

way that     does not contribute to the integrals for 

density 

 
as well as for the macroscopic flux 

 
Following the Braginskii method [22, 23], let us 

account a presence of the macroscopic flux with the 

help of transformation to the frame of reference which 

moves with the flux velocity  . Since we are interested 

in the slow non-relativistic fluxes, it seems natural to 

apply the classical Galilean velocity transformation, 

     
    . However, the relativistic nature of the 

moving object (i.e. the hot electrons themselves) means 

that the only right way is the reduction of the general 

Lorentz transformation (see, for example, [24]), taking 

            and keeping only the lowest 

order of  , 

 
Since this approach has a lower order with respect to   

than the weakly relativistic approach [24], we call this 

transformation a quasi-relativistic Galilean. 

Similarly, the drifting Jüttner-Maxwell distribution 

(DJM) also can be reduced, 

.

 
This approach includes all required effects. Below we 

will use this form of reduced DJM. 

For clarity, however, one specific point has to be 

emphasized. While the precise Lorentz transformation 

when applied to the standard DJM precisely cancel the 

drift in the moving coordinate system (exactly the same 

as in the classical case with the classical Galilean 

transformation), application of the quasi-relativistic  

Galilean transformation, Eq. (6), to the reduced DJM, 

given by Eq.(7), leads to only approximate canceling of 

thedrift. However, it can be easily shown that the 

residual term in exponentis of order     
       

   
   , which is very small since both conditions    

  
     and          are well satisfied by definition. 

Actually, this result confirms a validity of the proposed 

approach. 

For calculation of the moments in the next chapter, 

the Jacobian of the coordinate transformation is 

required. It can be found from the invariance of the 

phase-space volume and can be written as following: 

 
 

2. THE EQUATIONS FOR MOMENTS 
 

In this chapter, the moments of Eq. (1) are 

calculated. For compactness, we introduce the following 

notation 

 
One can checkthat〈  〉     and 〈  

 〉   .  

Direct integration of Eq. (1) leads to a continuity 

equation, which describes a conservation of the number 

of particles. In terms of the first moments, Eqs. (4, 5), 

this equation can be written as 

 
and there is no difference from the standard form. Here, 

in the right-hand-side, a possible presence of the 

external source is accounted. 

In order to calculate the next moments, such as the 

momentum, 〈    〉, kinetic energy, 〈   
      〉, 

and the viscosity tensor, 〈      〉, with the drift 

velocity, one has to define them in the rest frame, i.e. 
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the frame with no drift. The density of averaged kinetic 

energy of relativistic electrons can be written as [19] 

 

where    
 

 
    〈

   

  
〉      is the pressure and 

 
is the additional relativistic correction to the classical 

definition of energy density,    
 

 
      

We introduce also the heat flux: 

 
Now, it is easy to calculate the next moments, related to 

the rest frame, 

 
One can note that first moment in Eq. (14) is non-zero 

only due to the relativistic effects, while in the classical 

limit 〈  
 〉  〈  

 〉   . Second moment in Eq. (14) 

corresponds to the viscosity tensor, non-diagonal part of 

which can be written similar to the classical definition 

[22,23], 

 
Apart from that, we need to consider the terms with 

the collision operator. Since we take into account only 

the Coulomb collisions of electrons with electrons and 

ions, the number of particles is conserved automatically. 

Moreover, collisions of electrons with themselves 

conserve both the momentum and energy. As 

consequence, in the following only the electrons-ions 

collisional operator,        , is required. 

Again, firstly we consider only the rest frame. For 

that, we introduce the collisional friction force between 

the electrons and ions, 

 
the stress tensor generated by the electron-ion collisions, 

 
and the collisional rate of heat flux generated, 

 
Additionally, we introduce the rate of energy 

exchange between the relativistic electrons and classical 

ions. This process is significant only if    and    are 

different. In this case, the contribution from     is 

negligible, and the energy exchange can be explicitly 

calculated with the relativistic Jüttner-Maxwellian 

distribution of electrons and the classical Maxwellian 

distribution of ions [18], 

 
(in somewhat different form it was obtained also in 

[17]).  

Here,      
   is the classical value [23], 

 
with     as the standard collision frequency (not shown 

here). 

 

3. THE BALANCE EQUATIONS 
 

Since the final aim of this work is to obtain the 

equations which describe the force and energy balance 

in the laboratory frame of reference (equation of the 

particles balance is trivial and is given already; see Eq. 

(10)), we consider the moments that appear during an 

integration of the kinetic equation Eq. (1) with the 

weights      and    
      . Apart from that, also 

the moments 〈      〉 and 〈     
      〉 arise. 

Using the Eqs. (6) and (8), we calculate the first 

moment, i.e. the averaged momentum. Here and below, 

the terms of order      are neglected in final 

expressions and only the lowest order of Vis taken into 

account: 

 
For convenience, all relativistic corrections are grouped 

in brackets. One can see that the thermal force related to 

    
  is not canceled by    . 

As was mentioned above, for the force balance the 

additional moment is required. Formally, this moment 

corresponds to the viscosity tensor: 

 
where, following the classical definition, 

 
Please note that this expression, apart from the term in 

the square bracket, contains the relativistic correction 

also in the viscosity tensor    ; see Eq. (15). 

In order to simplify the calculation of the term, 

related to interaction with the electric and magnetic 

fields, it is convenient to use the conservative form of 

Eq. (1), 

 
This term is precise in any approach. 

The last term in the force balance is the collisional 

friction. In the lowest order with respect to  the result 

can be written as 

 
Finally, we obtain the balance of forces, which can 

also be called the momentum conservation equation:
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.

 
This equation is written in such a way that all relativistic 

corrections are emphasized. The non-relativistic limit 

can be easily recovered when    .  

As the next step, let us consider the moments 

required for the energy balance equation. Again, we 

calculate the respective moments in the laboratory 

frame. Let us start from the density of energy: 

 

 
One can find that with     this expression can 

be reduced to the classical limit, 
 

 
       

   
 

 
. 

The energy flow can be calculated using the 

previous results with the same accuracy, 

 
Next, for calculation of the term with electric and 

magnetic field, it is convenient to use the conservative 

form of kinetic equation. Since the magnetic field does 

not perform any work, only the electric field contribute 

to the respective moment, 

 
This term is also precise in any approach.  

The rate of collisional change of the energy can be 

written as 

 
Finally, combining all terms together, the energy 

balance equation can be written as following: 

 
One can see that the obtained set of “fluid” equations, 

Eqs. (10), (26), and (31), recovers the well-known 

classical limit. Indeed, in the limit     and    
   

   , the terms proportional to    disappear, 

   , and    . Evidently, the equations will be 

exactly the same as given in [22, 23]. 
 

CONCLUSIONS 
 

In the paper, the “fluid” equations for the relativistic 

electrons in hot plasmas have been derived. We have 

considered the case when slow flows with characteristic 

velocities       can be generated in plasma, while 

the thermal electron velocity is arbitrary and can even 

reach the speed of light. This condition makes it 

possible to apply a significantly reduced model, with a 

fully relativistic description of plasmas electrons and a 

“classical” description of macroscopic flows. 

In order to derive the equations, the method of 

Braginskii has been applied, with the only difference 

from the original derivation is that the macroscopic flow 

was taken into account using the so called quasi-

relativistic Galilean transformation with an accuracy to 

the lowest order of flow velocity. The equations are 

written in such a way that the relativistic contributions 

manifest itself as additional terms – relativistic 

corrections. 
We have found that the “mixed” approach, i.e. the 

description of plasma electrons at a fully relativistic 

level combined with a non-relativistic description of the 

flows, is completely sufficient for describing this kind 

of plasmas. Although there is practically no restriction 

on the electron temperature, the characteristic velocity 

of a flow   is   limited   by   the   conditions          

and      . However, both of these conditions are 

typically well satisfied for any fusion device by a wide 

margin. 
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УРАВНЕНИЯ БРАГИНСКОГО ДЛЯ ГОРЯЧЕЙ РЕЛЯТИВИСТСКОЙ ПЛАЗМЫ  

С МЕДЛЕННЫМИ ПОТОКАМИ: СМЕШАННОЕ ПРИБЛИЖЕНИЕ 

И. Марущенко, Н.А. Азаренков 

     Выводятся уравнения Брагинского для релятивистских электронов в горячей плазме с медленными 

макроскопическими потоками. Это рассмотрение подходит для описания типичной термоядерной плазмы с 

температурами в десятки килоэлектронвольт, когда необходимо учитывать вращение плазмы и продольные 

потоки. В отличие от других работ, посвященных классическому описанию процессов переноса в 

термоядерных устройствах, а также полностью релятивистскому описанию астрофизических объектов, мы 

предлагаем смешанный подход с полностью релятивистской кинетикой для горячих электронов и 

нерелятивистскими макроскопическими потоками. Полученная форма уравнений Брагинского включает в себя 

все важные особенности релятивистской гидродинамики, имеет тот же вид, что и классическое представление, 

которое в настоящее время реализовано в современных транспортных кодах, и может легко заменить 

последнее. 

 

РІВНЯННЯ БРАГІНСЬКОГО ДЛЯ ГАРЯЧОЇ РЕЛЯТИВІСТСЬКОЇ ПЛАЗМИ З ПОВІЛЬНИМИ 

ПОТОКАМИ: ЗМІШАНЕ НАБЛИЖЕННЯ 

І. Марущенко, М.О. Азарєнков 

Виведені рівняння Брагінського для релятивістських електронів у гарячій плазмі з повільними 

макроскопічними потоками. Запропонований розгляд підходить для опису лабораторної термоядерної плазми з 

температурами в десятки кілоелектронвольт, коли слід враховувати обертання плазми та поздовжні потоки. На 

відміну від інших робіт, присвячених класичному опису транспортних процесів у термоядерних пристроях, а 

також повному релятивістському опису астрофізичних об'єктів, ми пропонуємо змішане наближення з повністю 

релятивістською кінетикою для гарячих електронів та нерелятивістськими макроскопічними потоками. 

Отримана форма рівнянь Брагінського включає всі важливі особливості релятивістської гідродинаміки, має ту 

ж форму, що і класичне подання, яке в даний час впроваджено в сучасні транспортні коди, і може легко 

замінити останнє. 
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