DOI QR코드

DOI QR Code

AZO Transparent Electrodes for Semi-Transparent Silicon Thin Film Solar Cells

AZO 투명 전극 기반 반투명 실리콘 박막 태양전지

  • Nam, Jiyoon (School of Architectural, Civil, Environmental, and Energy Engineering, Kyungpook National University) ;
  • Jo, Sungjin (School of Architectural, Civil, Environmental, and Energy Engineering, Kyungpook National University)
  • 남지윤 (경북대학교 건설환경에너지공학부) ;
  • 조성진 (경북대학교 건설환경에너지공학부)
  • Received : 2017.04.06
  • Accepted : 2017.04.12
  • Published : 2017.06.01

Abstract

Because silicon thin film solar cells have a high absorption coefficient in visible light, they can absorb 90% of the solar spectrum in a $1-{\mu}m$-thick layer. Silicon thin film solar cells also have high transparency and are lightweight. Therefore, they can be used for building integrated photovoltaic (BIPV) systems. However, the contact electrode needs to be replaced for fabricating silicon thin film solar cells in BIPV systems, because most of the silicon thin film solar cells use metal electrodes that have a high reflectivity and low transmittance. In this study, we replace the conventional aluminum top electrode with a transparent aluminum-doped zinc oxide (AZO) electrode, the band level of which matches well with that of the intrinsic layer of the silicon thin film solar cell and has high transmittance. We show that the AZO effectively replaces the top metal electrode and the bottom fluorine-doped tin oxide (FTO) substrate without a noticeable degradation of the photovoltaic characteristics.

Keywords

References

  1. C. Peng, Y. Huang, and Z. Wu, Energ. Build., 43, 3592 (2011). [DOI: http://dx.doi.org/10.1016/j.enbuild.2011.09.032]
  2. A. Henemann, Renewable Energy Focus, 9, 14 (2008). [DOI: http://dx.doi.org/10.1016/S1471-0846(08)70179-3]
  3. M. Saifullah, J. Gwak, and J. H. Yun, J. Mater. Chem. A, 4, 8512 (2016). [DOI: http://dx.doi.org/10.1039/c6ta01016d]
  4. S. Yoon, S. Tak, J. Kim, Y. Jun, K. Kang, and J. Park, Building and Encironment, 46, 1899 (2011). [DOI: http://dx.oi.org/10.1016/j.buildenv.2011.03.010]
  5. G. E. Tulloch, J. Photochem. Photobiol. A, 164, 209 (2004). [DOI: http://dx.doi.org/10.1016/j.jphotochem.2004. 1.27]
  6. B. P. Jelle, C. Breivik, and H. D. Rokenes, Sol. Energy Mater. Sol. Cells, 100, 69 (2012). [DOI: http://dx.doi.org/10.1016/j.solmat.2011.12.016]
  7. Y. Yang, P.G.O. Brien, G. A. Ozin, and N. P. Kherani, Appl. Phys. Lett., 103, 221109 (2013). [DOI: http://dx.doi.org/10.1063/1.4833542]
  8. H. Maurus, M. Schmid, B. Blersch, P. Lechner, and H. Schade, Refocus, 5, 22 (2004). [DOI: http://dx.doi.org/10.016/S1471-0846(04)00255-0]
  9. Y. Lee, M. Choi, D. Kim, C. Kim, M. Song, J. Kang, Y. Jeong, K. Nam, S. Park, and S. Kwon, J. Phys. Chem. C., 116, 23231 (2012). [DOI: http://dx.doi.org/10.1021/jp306360h]
  10. H. Zhou, W. Hsu, H. Duan, B. Bob, W. Yang, T. Song, C. Hsu, and Y. Yang, Energy Environ. Sci., 6, 2822 (2013). [DOI: http://dx.doi.org/10.1039/C3EE41627E]
  11. J. Poortmans and V. Arkhipov, Thin Film Solar Cells (2006).
  12. X. Jiang, F. L. Wong, M. K. Fung, and S. T. Lee, Appl. Phys. Lett., 83, 1875 (2003). [DOI: http://dx.doi.org/10.1063/1.1605805]
  13. B. Rech and H. Wagner, Appl. Phys. A, 69, 155 (1999). [DOI: http://dx.doi.org/10.1007/s003399900064]
  14. H. Otaka, M. Kira, K. Yano, S. Ito, H. Mitekura, T. Kawata, and F. Matsui, J. Photochem. Photobiol. A, 164, 6 (2004). [DOI: http://dx.doi.org/10.1016/j.jphotochem.2003.11.012]
  15. J. Nam, Y. Lee, C. S. Kim, H. Kim, D. H. Kim, and S. Jo, J. Nanomater., 2016, 3613928 (2016). [DOI: http://dx.doi.org/10.1155/2016/3613928]
  16. J. Nam, Y. Lee, W. Choi, C. S. Kim, H. Kim, J. Kim, D. H. Kim, and S. Jo, Adv. Energy Mater., 6, 1601269, (2016). [DOI: http://dx.doi.org/10.1002/aenm.201601269]