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ABSTRACT. Despite extensive research, the prognosis of high-grade 
glioblastoma multiforme (GBM) has improved only slightly because 
of the limited response to standard treatments. Recent advances 
(discoveries of molecular biomarkers) provide new opportunities for 
the treatment of GBM. The aim of the present study was to identify 
diagnostic biomarkers of high-grade GBM. First, we combined 3 
microarray expression datasets to screen them for genes differentially 
expressed in patients with high-grade GBM relative to healthy 
subjects. Next, the target network was constructed via the empirical 
Bayesian coexpression approach, and centrality analysis and a 
molecular complex detection (MCODE) algorithm were performed 
to explore hub genes and functional modules. Finally, a validation 
test was conducted to verify the bioinformatic results. A total of 
277 differentially expressed genes were identified according to the 
criteria P < 0.05 and |log2(fold change)| ≥ 1.5. These genes were most 
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significantly enriched in the cell cycle pathway. Centrality analysis 
uncovered 9 hub genes; among them, TFDP1 showed the highest 
degree of connectivity (43) and is a known participant in the cell 
cycle pathway; this finding pointed to the important role of TFDP1 in 
the progression of high-grade GBM. Experimental validation mostly 
supported the bioinformatic results. According to our study results, 
the gene TFDP1 and the cell cycle pathway are strongly associated 
with high-grade GBM; this result may provide new insights into the 
pathogenesis of GBM.
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INTRODUCTION

Glioblastoma multiforme (GBM) is the most malignant tumor of the central nervous 
system and is characterized by rapid development, poor prognosis, problematic control, and 
high mortality among the patients (Krex et al., 2007; Okonogi et al., 2015); consequently, 
this cancer cannot be cured by traditional treatments. In recent decades, in contrast to many 
other cancers, the prognosis of GBM, especially high-grade GBM, showed only small 
improvements because of the limited response of GBM to standard treatments (Curran et 
al., 1993; Holland, 2000; Bleeker et al., 2012). Nevertheless, in recent years, computational 
biology and bioinformatics have provided new insights into the molecular pathogenesis of 
GBM and uncovered several possible biomarkers (Fujita et al., 2008; Verhaak et al., 2010; 
Preusser et al., 2011).

It has been suggested that genetic alterations and deregulation of metabolic or 
signaling pathways represent the major mechanism underlying the transformation of healthy 
cells into cancerous ones (Grzmil et al., 2011; Vogelstein et al., 2013). Various studies have 
focused on transcript profiling to identify genetic alterations between a tumor and healthy 
tissue or among tumor subtypes (stages). Godard et al. (2003) showed that 2 angiogenesis-
related factors, IGFBP2 and VEGF, are involved in specific biological functions and can 
be used for effective classification of tumors. Rich et al. (2005) reported that 3 key genes 
(SPARC, Doublecortex, and SEMA3B), which regulate cellular motility, may contribute to 
the poor prognosis in older patients with glioblastoma. The genome-scale high-throughput 
technology for transcript profiling holds promise as a clinical tool and may identify specific 
gene expression signatures and differential pathway activation at different tumor stages. 
Secondary utilization of the existing transcript data facilitates the discovery of possible 
biomarkers in high-grade GBM.

In this study, to further explore the pathogenesis and to improve the prognosis of high-
grade GBM, we identified some relevant dysregulated genes and pathways by integrating 
several microarray datasets with a coexpression network. Furthermore, hub genes were 
identified by centrality analysis of the coexpression network. Finally, reverse-transcription 
PCR (RT-PCR) and western blotting were performed to validate the bioinformatic results. 
Thus, this study may shed light on the molecular events behind the development and 
progression of GBM.
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MATERIAL AND METHODS

Bioinformatics

Data collection and preprocessing

We conducted a search for transcription profiling data comparing samples from 
healthy subjects and patients with GBM. Three microarray datasets (deposited in ArrayExpress 
http://www.ebi.ac.uk/arrayexpress/) were selected: E-GEOD-15824 (Grzmil et al., 2011), 
E-MEXP-567 (Margareto et al., 2007), and E-MTAB-3073 (Madhavan et al., 2009). From 
these 3 datasets, 259 GBM samples and 33 control samples were included in the present study, 
and 155 of 259 GBM patients had grade IV cancer. The characteristics of these 3 datasets are 
shown in Table 1.

Table 1. Characteristics of the previous studies included in the present study.

Accession No. Year GBM sample size Platform 
Total(Grade IV/Other grade/Controls) 

E-GEOD-15824 2011 27 (15/ 10/ 2) Affymetrix HG-U133Plus2 
E-MEXP-567 2007 9 (6/ 0/ 3) Affymetrix HG-U133A_2 
E-MTAB-3073 2009 256 (134/ 94/ 28) Affymetrix HG-U133Plus2 

 

For each dataset, the annotations for probes were obtained from the manufacturer 
documentation, and the original information on all conditions was subjected to data 
preprocessing. First, the robust multichip average (RMA) method (Ma et al., 2006) and 
the quantile algorithm (Rifai and Ridker, 2001) were used for background correction and 
normalization. Next, the microarray suite 5.0 (MAS 5.0) algorithm (Pepper et al., 2007) was 
used to revise the perfect match and mismatch values that were selected by the median polish 
method. Then, the data were screened by the feature filter method. Each probe was mapped to 
1 gene, and a probe was discarded if it did not match any gene.

Detection of differentially expressed genes (DEGs)

Different studies often involve experiments based on different plans, platforms, 
and methodologies; this situation hinders further analysis and leads to incorrect conclusions 
(Leek et al., 2010). Prior to detecting DEGs, we should first eliminate the undesirable effects 
from various batches of gene expression values. In the present work, distance-weighted 
discrimination (DWD) (Huang et al., 2012), an adaptation of support vector machines (Vapnik, 
1995), was implemented to remove biases and to merge these 3 datasets into one.

In the present study, DEGs were identified by the empirical Bayesian method (F test) 
that is implemented in the linear models for microarray data (LIMMA) package and is adjusted 
by the false discovery rate (FDR) method (Wettenhall and Smyth, 2004). We used probe sets 
with an adjusted P value <0.05 and |log2FC| ≥ 1.5 (where FC = fold change).

Coexpression network and module mining

Construction of a coexpression network from high-throughput data has become a 
popular approach to analysis of the whole spectrum of pairwise relations among genes. In our 
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study, differentially coexpressed gene pairs were identified by the empirical Bayesian (EB) 
approach. Details of the protocol are described elsewhere (Dawson and Kendziorski, 2012). 
A coexpressed gene pair with an FDR value less than 0.05 was assumed to be differentially 
coexpressed. When examining the microarray data that we included into the study, we found 
the expression data on grade IV GBM to be overwhelming. Thus, in this study, the coexpression 
network was constructed from expression data on grade IV GBM.

To extract functional modules from global coexpression networks, clustering analysis 
was implemented to detect highly connected subgraphs by means of the molecular complex 
detection (MCODE) algorithm (Bader and Hogue, 2003). In the present study, we used the 
following settings in MCODE for the detection of modules in a coexpression network: degree 
cutoff = 2, K-core = 3, and max. depth = 100.

Centrality analysis

In any network structure, the role of a node depends not only on the features of the node 
itself but also on the topological structure of the network and on the features of other nodes. 
Thus, centrality analysis was performed to identify the nodes that are more sensitive to deletion 
or addition of a particular node to the network (Scardoni and Laudanna, 2012). Similar to a 
real network, a biological network is also scale-free: this characteristic strongly correlates with 
network robustness. In a scale-free network, the degree distribution of nodes follows a power 
law. Nodes with a high degree (highly connected) are often called “hubs”, which interact with 
several other genes. Thus, the high degree of connectivity is suggestive of a central role in the 
interaction network. In this study, genes with degree > 30 were considered hub genes.

Validation of hub genes

Patients

A total of 10 GBM samples were excised from patients who underwent a surgical 
procedure in our hospital between January 2014 and December 2014. The study population 
included 6 males and 4 females, ranging in age from 22 to 53 years (average, 22.4 years). In 
terms of the location of the tumors, there were 2 tumors in the temporal lobe, 2 in the frontal 
lobe, 2 in the basal ganglia region, 2 in the cerebellum, 1 in the occipital lobe, and 1 in the 
optic tract. Seven of the tumors had clear boundaries and a diameter of 1.5-8.6 cm. Clinical 
signs pointed to epilepsy, intracranial hypertension (headache, nausea, or vomiting), or a 
partial neural function defect. Written informed consent was obtained from the people who 
agreed to participate in this study before the collection of tissue samples. The study protocol 
was approved by the Institutional Ethical Committee and Review Board of Mudanjiang City 
Second People’s Hospital.

RT-PCR

Total RNA was isolated from the tumor samples using the TRIzol Reagent (Invitrogen, 
Carlsbad, CA, USA) following the manufacturer protocol. cDNA was synthesized with the 
AMV reverse transcriptase and oligo(dT18) primers (Invitrogen). The data were normalized to 
β-actin (reference gene). The primers for hub genes and β-actin are listed in Table 2.
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Amplification of the reverse-transcribed RNA was performed in a total volume of 20 
µL containing 2 µL diluted cDNA, 8 µL dNTPs, 1 µL High Fidelity Taq DNA Polymerase 
(Invitrogen), and 3 µL each forward and reverse primer. The PCR cycling conditions for the 
candidate genes were as follows: 94°C for 2 min; 30 cycles of 98°C for 10 s, 54°C for 15 s, 
and 68°C for 1 min; and final extension at 72°C for 7 min. Each reaction was performed in 
triplicate. The RT-PCR products were separated on 1.5% agarose gels and then analyzed with 
the Quantity One software (Bio-Rad, Hercules, CA, USA).

Western blotting

All brain tissue samples were ground to a powder in liquid nitrogen and then incubated 
with lysis buffer [62.5 mM Tris-HCl (pH 6.8), 10% glycerol, and 2% sodium dodecyl sulfate 
(SDS)] on ice. Protein concentration was determined by the Bradford assay (Bio-Rad). Ten 
micrograms of total protein was separated by electrophoresis on a 12% SDS-polyacrylamide 
gel and electrotransferred onto a polyvinylidene fluoride membrane. The membrane was 
incubated with fresh blocking buffer (containing 5% nonfat dry milk in Tris-buffered saline) 
at room temperature for 2 h and was then incubated with a rabbit anti-human IgG antibody 
(1:10,000 dilution; Sigma-Aldrich, St. Louis, MO, USA) at 37°C for 2 h. The membrane 
was rinsed 3 times for 5 min each in Tris-buffered saline containing Tween 20. After that, 
the membrane was incubated with a horseradish peroxidase-conjugated goat anti-rabbit 
IgG antibody (1:5000; Amersham Pharmacia Biotech, Little Chalfont, Buckinghamshire, 
UK) at room temperature for 2 h. Enhanced chemiluminescence was used for detection. 
Immunoreactive bands were scanned and quantified by means of the Scion Image software 
(Scion, Frederick, MD, USA). GAPDH served as a loading control.

Data analysis

All data are reported as means ± SD, and statistical analysis was carried out with the 
SPSS 19.0 software (SPSS, Chicago, IL, USA). The Student t-test was used for assessment 

Table 2. The primer sequences and length for the candidate genes.

Gene Primer Length (bp) 
TFDP1 F: CAAGTGACCTGACCAACGGT 546 

R: GCAAATAAGCGGCATCAGGG 
CX3CR1 F: TGCATTTGCTGGGGAGAAGT 188 

R: AGAGAAGGAGGGACGCATCT 
GNG12 F: CAGCGAGATGGCTCAGTAGG 437 

R: GTGCCTGGTCCTAAGTCACC 
FCGBP F: TCCCTGTCCAAGATTGTGGC 825 

R: CCCAGAAAAGCGGTAGAGCA 
JAM2 F: TCTGAGCAAGGCCAAAACCT 364 

R: ATGTTGAGATCATTTGCATTCGT 
CD163 F: GGGGACATTCCCTGTTCTGG 717 

R: CAGGCGAAGTTGACCACTCT 
C3 F: GTTCATTCAGGGCACCGGACA 280 

R: CGGCATTCTGCACGCTTCAA 
LMO2 F: GAAAGGAAGAGCCTGGACCC 301 

R: TCTCATAGGCACGAATCCGC 
LAPTM4B F: AGCGAGGATGTCCTTGACAC 585 

R: TCTGGCCGTTCGTGTAACTC 
-actin F: AAGTACTCCGTGTGGATCGG 615 

R: TCAAGTTGGGGGACAAAAAG 
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of the significance of differences. A difference with P < 0.05 was considered statistically 
significant.

RESULTS

DEGs in GBM

After preprocessing of the 3 abovementioned expression profiles, the numbers of 
genes in E-GEOD-15824, E-MEXP-567, and E-MTAB-3073 were as follows: 20,109; 12,493; 
and 20,109, respectively. After merging of the 3 datasets by the DWD method, we screened 
4214 genes. In accordance with the criteria FDR < 0.05 and |log2FC| ≥ 1.5, a total of 277 
genes were consistently differentially expressed in GBM, including 102 upregulated genes 
and 175 downregulated genes. Pathway enrichment analysis showed that these DEGs were 
most significantly enriched in the cell cycle pathway (P = 0.02).

Coexpression network and modules

The coexpression network of DEGs was constructed by means of the EB algorithm, 
and the coexpression relations within coexpressed gene pairs were deduced from the gene 
expression data on grade IV GBM. A total of 1005 coexpressed gene pairs with FDR ≤ 0.05 
were identified. Finally, the coexpression network with 232 nodes was built in the Cytoscape 
software, as shown in Figure 1. The MCODE algorithm was implemented to extract modules. 
By clustering, we identified 7 modules. Among them, Modules 1, 2, and 3 showed the highest 
module scores. The characteristics of the modules identified in our study are shown in Table 3.

Figure 1. Coexpression network of high-grade glioblastoma multiforme on the basis of differentially expressed 
genes. Nodes represent genes and edges represent the interactions. The blue nodes are hub genes.
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Network analysis

Centrality analysis was performed to study topological characteristics of the 
coexpression network of GBM (Figure 2). By analyzing the degree distribution, we labeled 
9 genes as hub genes (their connectivity degree was greater than the threshold value 30). 
The TFDP1 gene showed the highest degree (43) in the network, followed by CX3CR1, 
GNG12, FCGBP, JAM2, CD163, C3, LMO2, and LAPTM4B. Of the 9 hub genes, 3 genes 
were upregulated and 6 were downregulated. The details are shown in Table 4.

Table 3. Characteristics of modules identified in this study.

Module Score Nodes Edges Genes at the top 10% of degree distribution 
1 9.771 36 171 CD163, FCGBP, JAM2, TIMP4, C1orf61, CXCR4, C1QA, NPAS3, APOC1, 

VSIG4 
2 8.000 60 236 FCGBP, JAM2, GNG12, TIMP4, C1orf61, CXCR4, C1QA, NPAS3, 

CD163, SERPINA3, CRB1, ERLIN1 
3 7.848 67 259 CD163, LMO2, JAM2, C1orf61, C1QA, NPAS3, SERPINA3, CRB1, RFX4 
4 4.853 69 165 LMO2, JAM2, C1QA, SERPINA3, CRB1, RFX4 
5 3.474 39 66 LMO2, SERPINA3, RFX4, CRB1 
6 3.463 42 71 GNG12, ERLIN1 
7 2.143 15 15 LMO2 

 The bold genes are hub genes.

Figure 2. Topological characteristics of the coexpression network according to centrality analysis.

Table 4. Fold change and degree distribution of hub genes in our study.

Gene Description Degree Log2FC 
TFDP1 Transcription factor Dp-1 43 1.57 
CX3CR1 Chemokine (C-X3-C motif) receptor 1 40 -1.85 
GNG12 Guanine nucleotide binding protein (G protein), gamma 12 33 1.77 
FCGBP Fc fragment of IgG binding protein; 32 -1.80 
JAM2 Junctional adhesion molecule 2 32 -1.55 
CD163 CD163 molecule 32 -2.22 
C3 Complement component 3 32 -1.76 
LMO2 LIM domain only 2 31 -2.00 
LAPTM4B Lysosomal protein transmembrane 4 beta 31 1.81 
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Validation of the hub genes

In this study, RT-PCR and western blotting were conducted to analyze the mRNA 
and protein expression, respectively, in the brain tissues of patients with GBM. The GBM 
tumor samples showed higher levels of mRNA and protein expression of TFDP1, GNG12, 
and LAPTM4B in comparison with healthy controls (P < 0.05). CX3CR1, FCGBP, CD163, 
C3, and LMO2 were downregulated in GBM as compared to healthy controls at both mRNA 
and protein levels (P < 0.05, Figure 3A); these results were consistent with our bioinformatics 
analysis. In contrast, mRNA and protein expression levels of JAM2 showed no significant 
differences between the 2 groups (P > 0.05, Figure 3B), but this gene was downregulated in 
GBM tissues according to our bioinformatics analysis.

Figure 3. Relative expression levels of hub genes in patients with glioblastoma multiforme (GBM). A. mRNA 
levels. B. Protein expression levels. *P < 0.05.

DISCUSSION

GBM is a complex disease whose pathogenesis has not been fully elucidated. 
Identification of the key genes associated with GBM should elucidate the pathogenesis 
and point to therapeutic targets in GBM. In the present study, 277 DEGs were found to be 
associated with GBM. Among these disturbed genes, we identified 9 hub genes (those with 
a high degree of connectivity). Furthermore, experimental validation of these genes mostly 
supported our bioinformatic results (except for JAM2 at both the mRNA and protein levels). 
The probable reasons for the inconsistent result may be, for example, race, variations in other 
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compounding factors and experimental conditions, and the small sample size. The criteria for 
differential expression in our bioinformatics analysis were FDR < 0.05 and |log2FC| ≥ 1.5; 
the Student t-test was used for the validation part of the project. The microarray data were 
obtained from the ArrayExpress database (not generated by us). In addition, the small number 
of samples in the experimental groups may be another significant reason.

In this work, the gene TFDP1 was found to be upregulated and showed the highest 
degree of connectivity according to our network analysis strategy. As an important transcription 
factor, TFDP1 has been shown to interact with several oncogenes, such as E2F (Hsu et al., 
2001) and P53 (Sørensen et al., 1996). In vivo, TFDP1 interacts with E2F family proteins, 
forming heterodimers. The E2F-TFDP1 transcription factor can regulate some cell cycle (S 
phase)-related genes, which perform essential functions in cellular processes (Zhang et al., 
1997). Moreover, several studies showed that the E2F-TFDP1 transcription factor is involved 
in dysregulation of the cell cycle in certain cancers (Girling et al., 1993; Matsumoto et al., 
1997; Williams et al., 1997). We found the cell cycle pathway to be significantly enriched in 
our set of GBM-related genes; TFDP1 is known to participate in this pathway. These findings 
point to a possible important role of TFDP1 in the development and progression of GBM. Our 
study seems to be the first to show that TFDP1 is associated with high-grade GBM.

The cell cycle is a series of events that take place in a cell that lead to cell division 
and duplication. Dysregulation of cell cycle components may cause the cell to multiply 
uncontrollably, thus leading to tumor formation (Champeris Tsaniras et al., 2014), as is the 
case for GBM (Hazane-Puch et al., 2015; Xie et al., 2015). Various studies have shown that 
the cell cycle pathway and cell cycle-related molecules can be considered therapeutic targets 
of many cancers (Rao, 1996; Newman et al., 2002). Di Tomaso et al. (2000) found that the 
uncontrolled proliferation of glioma cells may be linked to genetic alterations in the cell cycle 
pathway. Moreover, Li et al. (2014) uncovered several inverted gene pairs that participate in 
the cell cycle pathway and may help to develop new treatments of GBM.

In conclusion, in this study, by integrating microarray expression data with a 
coexpression network, we identified 9 hub genes and 7 modules. Our hub gene TFDP1 and the 
cell cycle pathway were found to be strongly associated with high-grade GBM. This finding 
may yield new clues to the molecular pathogenesis of GBM. Further research (clinical and 
basic) is expected to elucidate the specific mechanisms of action of TFDP1 and of the cell 
cycle pathway in relation to GBM.
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