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ABSTRACT. Lipase-producing bacteria are naturally-occurring, 
industrially-relevant microorganisms that produce lipases, which can 
be used to synthesize biodiesel from waste oils. The efficiency of lipase 
expression varies between various microbial strains. Therefore, strains 
that can produce lipases with high efficiency must be screened, and the 
conditions of lipase metabolism and optimization of the production process 
in a given environment must be thoroughly studied. A high efficiency lipase-
producing strain was isolated from the sediments of Jinsha River, identified 
by 16S rRNA sequence analysis as Serratia marcescens, and designated 
as HS-L5. A schematic diagram of the genome sequence was constructed 
by high-throughput genome sequencing. A series of genes related to 
lipid degradation were identified by functional gene annotation through 
sequence homology analysis. A genome-scale metabolic model of HS-ML5 
was constructed using systems biology techniques. The model consisted 
of 1722 genes and 1567 metabolic reactions. The topological graph of 
the genome-scale metabolic model was compared to that of conventional 
metabolic pathways using a visualization software and KEGG database. 
The basic components and boundaries of the tributyrin degradation 
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subnetwork were determined, and its flux balance analyzed using Matlab 
and COBRA Toolbox to simulate the effects of different conditions on the 
catalytic efficiency of lipases produced by HS-ML5. We proved that the 
catalytic activity of microbial lipases was closely related to the carbon 
metabolic pathway. As production and catalytic efficiency of lipases varied 
greatly with the environment, the catalytic efficiency and environmental 
adaptability of microbial lipases can be improved by proper control of the 
production conditions.
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INTRODUCTION

Lipase (triacylglycerol acylhydrolase; EC3.1.1.3) catalyzes the hydrolysis of long-chain 
fatty glycerides into long-chain fatty acids and glycerol, as well as the reverse reaction (Jaeger 
and Reetz, 1998). Microbial lipases are abundant in the environment, and possess advantages 
including high catalytic activity and diversity, as well as ease of industrial production, stability, low 
production cost, and short production cycle. In practice, these lipases are screened to obtain high-
efficiency lipase-producing strains.

Fatty acid esters or biodiesels are produced with natural lipases as catalysts and 
biological grease and short-chain alcohol as raw materials using an enzymatic method (Ha et al., 
2007). Biodiesel is a renewable energy source that has a broad range of advantages, including 
environmental protection and improved performance over ordinary diesel, and applications. The 
manufacture of biodiesel by the catalysis of waste oils is an effective means of dispensing with 
waste oils, in addition to providing an abundance of renewable energy. Therefore, the catalytic 
environment of lipases must be studied in vivo, and the biodiesel production improved by optimizing 
the catalytic conditions (Kamini and Iefuji, 2001).

A genome-scale metabolic model (GSMM) is an indispensable tool for the study of 
microbial metabolism; GSMM adopts a systems biology approach to integrate data from genomics, 
transcriptomics, proteomics, and metabolomics, and has been widely used to analyze the network 
properties of metabolism, predict and analyze the phenotypes of organism growth, interpret 
experimental data (Barrett et al., 2005), and in metabolic engineering. It is generally difficult to 
identify the key metabolic modules contributing to lipid physiology. Reconstruction GSMM can be 
used to systematically analyze the function of each gene, the metabolic reaction, and model the 
resultant effects using flux balance analysis (FBA). Specific pathways can be understood using 
a model of the whole metabolic network; moreover, strain design strategies can also be used to 
guide metabolic engineering experiments. GSMM studies provide a new approach to investigating 
complex lipid metabolism.

The genome sequence of the lipase-producing strain was drafted by high-throughput 
sequencing. A genome-scale metabolic model was constructed from the perspective of systems 
biology (Mahadevan and Schilling, 2003); that is, the catalytic process and conditions of microbial 
lipases were simulated. These findings could help formulate guidelines for in vitro biodiesel 
synthesis catalyzed by microbial lipases.
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MATERIAL AND METHODS

Strain selection and molecular characterization

Strain samples (10 g) were suspended in sterile water (20 mL), agitated, and made to 
stand for 10 min. The enrichment medium (yeast extract 2.0 g/L, disodium hydrogen phosphate 
3.5 g/L, dipotassium phosphate 5.0 g/L, magnesium sulfate heptahydrate 0.5 g/L, sodium 
chloride 1.5 g/L, ammonium sulfate 2.0 g/L, olive oil 10.0 mL/L, pH 7.0) was inoculated with 
the supernatant (1 mL), and incubated at 28°C for 2 days. The medium was enriched thrice at 
190 rpm. The bacterial suspension was diluted by gradient dilution method; the dilutions were 
inoculated onto tributyrin plates (tryptone 10.0 g/L, yeast extract 5.0 g/L, sodium chloride 10.0 
g/L, agar 15.0 g/L, tributyrin 2.0 mL/L, pH naturally) and cultured at 28°C for 2 days. Colonies 
presenting obvious hydrolysis circles were picked, transferred to seed medium (glucose 20.0 g/L, 
ammonium sulfate 5.0 g/L, dipotassium phosphate 1.0 g/L, eEpsom salt 0.5 g/L, tryptone 25.0 g/L, 
olive oil 10.0 mL/L, pH 7.0), and cultured at 28°C for 1day. Genomic DNA was extracted from these 
cultures and used as template for the amplification of 16S rDNA. The primers used for PCR were: 
forward, F-5'-AGAGTTTGATCCTGGCTCAG-3' and reverse, R-5'-GGTTACCTTGTTACGACT-3'. 
The PCR system (50 µL) consisted of the DNA template (6 µL), forward and reverse primers (F 
and R; 2 µL each), enzyme mix (25 µL), and ddH2O (15 µL). The PCR conditions were set as 
follows: denaturation at 94°C for 5 min; 30 cycles of denaturation at 94°C for 30 s, annealing at 
55°C for 1 min, and extension at 72°C for 5 min; and a final extension at 72°C for 10 min. The 
PCR products were recovered using a standard PCR Purification Kit (Dongsheng Biotech Co., 
Ltd., Guangzhou, China) and sequenced by the GenScript Corporation [GenScript (Nanjing) 
Co., Ltd., Nanjing, China]. The obtained sequences were aligned with sequences obtained from 
GenBank using the Basic Local Alignment Search Tool (BLAST). The phylogenetic tree was built 
using the MEGA software.

Genome sequencing and strain identification

The whole genome of the strain was sequenced by Illumina Hiseq 2000; subsequently, an 
Illumina PE (~500-bp) library was constructed. The initial raw images were converted to sequences 
using the Base Calling program and stored as FASTQ files; these files contained the sequence 
information of reads and sequencing quality information. The raw data was trimmed: adaptor 
sequences were removed from reads; bases other than A, G, C, and T at the 5’-terminal were 
removed; terminal groups of reads with low sequencing quality (score <20) were removed; reads 
with N ~ 10% were removed; and small fragments containing adapters, and with length <25 bp 
after trimming were removed.

Multi-k-mer assemblies of the optimized sequences were constructed using SOAP de 
novo v2.04 (http://soap.genomics.org.cn/). The gaps in the optimized assemblies were filled and 
base corrections were performe dusing GapCloser v.1.12. The working principle of SOAP de novo 
is shown in Figure 1.

Multi-k-mer assemblies were evaluated based on the total length of assembly, number of 
scaffolds, and scaffold N50. Therefore, the optimal k-mer was chosen as the final assembly. The 
16S rDNA sequences were aligned using BLASTn, and the strain was identified. The sequences 
were analyzed using Clustal Xv.1.8, and the phylogenetic tree built using the MEGA 6.0 software.
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Figure 1. Schematic diagram of the principle of SOAP de novo (Li et al., 2010).

Functional genome annotation

Genome annotation was performed using RAST (http://rast.nmpdr.org/) (Aziz et al. 2008).

Construction, simulation, and revision of genome-scale metabolic network

A genome-scale metabolic network was constructed, simulated, and revised. The initial 
metabolic draft containing complete Gene-Protein-Reaction (GPR) associations was generated 
using MODEL SEED. The draft was later revised according to metabolic pathway data from Kyoto 
Encyclopedia of Genes and Genomes (KEGG) and BioCyc database. All reaction information 
obtained from KEGG was checked using a method described by Ma and Zeng (2003). Eleven 
rules, determining the direction in which the reaction would proceed, were proposed based on 
physiological knowledge. The genome-scale metabolic models of the two strains were constructed.
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Visualization and topological analysis of the metabolic network

The metabolic network was visualized using the Cytoscape v.2.8.2 software (Shannon 
et al., 2003) and topological analysis was carried out using Network Analyzer. The levels of the 
network were analyzed, and the modules were established with MCODE.

Flux analysis of functional modules

Constraint-Based Reconstruction and Analysis (COBRA) Toolbox in Matlab was used for 
flux analysis (Orth et al., 2010). FBA was performed using optimize CbModel, which allowed for the 
prediction of the growth rate and product synthesis rate of the strain.

RESULTS

Strain selection and identification

The screening process revealed a high-efficiency lipase-producing strain (HS-L5). 
The samples from soil from the suburban area of Wuhan City (cultivated with castor plant) and 
sediments from the Jinsha River were enriched and screened twice (primary and secondary). As 
a result, 32 strains that utilized tributyrin were isolated, with 15 strains showing obvious hydrolysis 
circles on the plate. The plate for preliminary screening is shown in Figure 2.

Ten strains with a large ratio of diameter of transparent circle to colony diameter, numbered 
HS-L1 to HS-L10, were selected for the second screening. The ratios of diameter of transparent 
circle to colony diameter are summarized in Table 1.

Figure 2. Preliminary screening of lipase-producing strains.
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Table 1. Transparent circle method of screening for lipase-producing strains.

Strain Diameter of strain (d) mm Diameter of hydrolysis ring (D) mm D/d 
HS-L1 2.4 4.7 1.97 
HS-L2 2.2 3.1 1.42 
HS-L3 2.6 3.2 1.23 
HS-L4 3.3 4.4 1.32 
HS-L5 6.1 35.1 2.18 
HS-L6 1.4 2.3 1.67 
HS-L7 3.5 5.4 1.54 
HS-L8 1.6 3.5 5.76 
HS-L9 3.1 6.5 2.09 
HS-L10 2.1 3.9 1.86 

 

16S rDNA was amplified using genomic DNA of strain HS-L5 as the template and universal 
bacterial primers. The PCR products were purified and sequenced. The size of 16S rDNA of the 
HS-L5 strain was 1496 bp. This was followed by morphological characterization and physiological 
and biochemical identification. A phylogenetic tree was built based on alignment using the BLAST 
alignment tool. The homology between strain HS-L5 and Serratia marcescens was as high as 99%; 
therefore, the strain was preliminarily identified as Serratia sp. Sequence analysis using ClustalX 
1.8 was used to build a phylogenetic tree using the MEGA 6.0 software package (Figure 3).

Figure 3. Phylogenetic tree showing the relationship between HS-L5 and other phylogenetically similar strains based 
on the 16s rDNA sequence (neighbor-joining method).

Genome sequencing

The indicators of final assemblies (Table 2) revealed that HS-L5 contained 190 scaffolds.
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Table 2. Indicators of final assemblies.

 HS-L5 
Number of all scaffolds 190 
Bases in all scaffolds 10,583,491 bp 
Number of large scaffolds (>1000 bp) 187 
Bases in large scaffolds 10,581,762 bp 
Largest length 427,419 bp 
Scaffold N50 134,885 bp 
Scaffold N90 333,55 bp 
G+C content 54.196% 
N rate 0.014% 

 
Functional genome annotation

Genome annotation of HS-L5 was performed by RAST annotation (http://rast.nmpdr.org/); 
4411 genes were annotated (Figure 4).

Figure 4. Results of genome annotation of HS-L5.

Construction of metabolic network

A genome-scale metabolic network was constructed, simulated, and revised. The initial 
metabolic draft containing complete GPR associations was generated using MODEL SEED. The 
draft was later revised based on metabolic pathway data from KEGG and BioCyc. All reaction 
information in KEGG was checked using a method described by Ma and Zeng (2003). Eleven 
rules determining the direction in which the reaction would proceed were proposed based on 
physiological knowledge. A genome-scale metabolic model was constructed for the strain HS-ML5 
(Table 3). The gene coverage of the metabolic model was 19.89%.
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Table 3. Parameters of gene network model of HS-L5 and HS-L8.

Strain Total number of genes annotated Number of reactions covered Number of genes covered 
HS-ML5 5335 1130 1061 

 

Flow analysis for the metabolic model

The reactions related to biomass synthesis were supplemented using the reactions of 
Shewanella oneidensis MR-1. (6.9E-5) 12dag3p[c] + (0.123001) 12dgr[c] +(0.05) 5mthf[c]+ (5.0E-
5) accoa[c] + (0.010152) agpe[c] + (4.21E-4) agpg[c] + (0.001) amp[c] + (220.22) atp[c] + (6.0E-6)
coa[c]+(0.001608)dna [c]+(5.0E-5) fad[c] + (0.472431) glycogen[c] + (220.22) h2o[c] + (0.01114) 
lps[c] + (0.00215) nad[c] + (5.0E-5) nadh[c] + (1.3E-4) nadp[c] + (4.0E-4) nadph[c] + (0.069393) 
pe[c] + (0.027781) peptx[e] + (0.020076) pgly[c] + (4.87E-4) protein_aerobic[c]+ (0.035) ptrc[c] + 
(0.002818) rna [c] + (0.007) spmd[c] + (3.0E-6) succoa[c] + (0.003) udpg[c] ---> (220.22) adp[c] + 
(220.22) h[c] + (220.22) pi[c].

The “biomass Precursor Check” model (COBRA) in Matlab was used to check if the 
precursor substances for biomass synthesis in the metabolic network could be synthesized. If not, 
“gap Analysis” was used to identify the metabolic gaps; these were then filled by supplementing 
reactions from, or by a Demand Reaction search of, databases and literature. The precursor 
substances were thus synthesized. The upper and lower boundaries of flux were configured using 
exchange reactions. The lower and upper boundaries of flux were set as “-1000.0” and “1000.0”, 
respectively. Therefore, the absorption and secretion of substances were without limit. The maximal 
growth rate of strain HS-ML5 was calculated using “optimize CbModel.” If the cells could not grow, 
gaps in the metabolic network were identified and filled by a search of the KEGG, BRENDA, and 
Biocyc databases, and relevant literature. “None gene reactions” were supplemented with none 
GPRs, if required.

Visualization and topological analysis of the metabolic network

The metabolic model of HS-ML5 contained 2774 nodes and 3955 sides (Figure 5). 
Network Analyzer revealed that the average length of the path of the network was 8.068. The 
average length of path is an important indicator of the speed of information communication between 
nodes. Since metabolic networks are typical scale-free networks, they demonstrate a “small world” 
property (Watts and Strogatz, 1998). Most metabolites in the two metabolic networks are mutually 
convertible by reactions at less than 9 steps. Therefore, the changes in metabolite concentration 
can rapidly spread to the entire network.

The scale-free property of the complex biological network renders a high amount of 
robustness to the system. In other words, if nodes other than hubs are removed, the network still 
exists and remains connected. However, scale-free networks are vulnerable to attack by the hubs. 
Because of this feature, we must adhere to one principle in enhancing the model objective through 
biological operations: the genes or proteins to be operated on should not be hubs, while keeping 
as close to the hubs as possible. We calculated the degree of connection of nodes in the network 
(Ravasz et al., 2002; Opsahl et al., 2010). Figure 6 shows that limited nodes in the two networks 
have a high connection degree; that is, a small number of nodes with a high connection degree, 
which are linked to a myriad of nodes, dominate the entire network and maintain its structure. The 
same feature was presented by the topological coefficients of the networks (Figure 7).
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Figure 5. Visualization and topological analysis of the metabolic network.

Figure 6. Connection degree of the nodes and topological coefficients for nodes in the metabolic network of HS-ML5.

Figure 7. Betweenness centrality and closeness centrality of nodes in the metabolic network of HS-ML5.
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We also calculated the betweenness centrality and closeness centrality in the two networks 
(Figure 6). Betweenness centrality is a measure of whether a node is the center of the network, and 
describes the flux going through one node in the network: the larger the betweenness centrality 
of the node, the larger the flux going through it (Opsahl et al., 2010). It was apparent that a few 
nodes in the networks shared a predominant portion of the flux; these were designated as hubs. 
Closeness centrality represents the length of the shortest path, and the nodes closer to the center 
have a higher closeness centrality. In the figure, an increase in the number of adjacent nodes led 
to a corresponding increase in the closeness centrality.

The two metabolic networks had scale-free properties and certain hierarchies. The 
subnetworks with high degree of clustering constituted of modules with biological functions.

Determination of lipid degradation subnetwork and construction of functional 
modules

The lipid degradation subnetwork in model HS-ML5 was identified using MCODE (Saito et 
al., 2012). The lipid degradation pathways were closely related to the carbon metabolism pathways, 
with respect to the metabolic network. The biological module of lipid degradation and related 
metabolic reactions, in combination with annotations, showed the presence of four major pathways 
and 73 reactions in both models; these were the glycolysis/gluconeogenesis (30 reactions), TCA 
cycle (18 reactions), alanine and aspartic acid metabolism (15 reactions), and lipid degradation (10 
reactions) pathways (Figure 8).

Figure 8. Lipid metabolism pathway in the metabolic network of HS-ML5.
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Using the metabolic network of Escherichia coli, FBA was performed for this module. 
Minimum essential medium was used in all simulations to ensure the absorption of phosphate, sulfate, 
H2O, protons, and ammonia, as well as secretions. The lower boundary of flux through exchange 
reactions in the network was set as -1000 mmol·gDW-1·h-1, at which the microbial absorption of these 
elements would not be restricted. Tributyrin was used as the only carbon source, and the maximum 
rate of carbon absorption was restricted to 10 mmol·gDW-1·h-1. The lower and upper boundaries 
of flux through other exchange reactions were set as 0 and 1000, respectively. Therefore, some 
small molecules produced within the cell were secreted outside the cell. The conditions of exchange 
reactions were configured, and the simulation experiments were initiated.

The medium containing triglyceride was used with the objective of achieving maximum 
fatty acid synthesis. The main factors influencing fatty acid synthesis were concentrations of 
triglyceride, glycerol, and acetyl CoA. Glycerol accumulation would impede fatty acid synthesis 
through triglyceride degradation. The synthesis of acetyl CoA is the major reason for the 
consumption of fatty acids (74%). Excess glycerol can lead to an increase in the synthesis of 
phosphomonoglyceride and diglyceride, which in turn leads to a decrease in fatty acid synthesis. 
Some studies have indicated that glycerol inhibits the activity of glycerol lipases.

DISCUSSION

The simulations indicated that the efficiency of fatty acid synthesis from lipids could be 
improved by three methods. Lipase EC3.1.1.3 catalyzes the conversion of long-chain acyl triglyceride 
and diglyceride into acyl monoglyceride and fatty acids, respectively, and not the conversion of acyl 
monoglyceride into glycerol. Therefore, lipid degradation by glycerol can be inhibited by increasing 
the purity of lipase EC3.1.1.3, which in turn could reduce the contamination of monoglyceride lipase 
EC3.1.1.23, which catalyzes the degradation of monoglyceride. Another method would be to separate 
the monoglyceride produced during the reaction using a new industrial design, which inhibits excess 
accumulation and increases the rate of degradation. Lastly, through the lipase reaction, diglyceride 
catabolism can only give fatty acids and glycerol as the final products, and the degradation of fatty 
acids can be inhibited by the addition of acetyl CoA. Thus, the removal of acetyl CoA can activate the 
lipase in the bacterial strain HS-ML5, as described in the present study. Moreover, the efficiency of in 
vitro industrial production using natural enzymes for catalytic reactions could be improved by process 
optimization and simulation of reaction environments and conditions within the organisms.
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