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ABSTRACT. Liver cancer (LC) is generally characterized by
malignant cell proliferation and growth; it normally develops in stages
that progress from non-specific injury of the liver to liver fibrosis,
liver cirrhosis, dysplasia nodules, and liver carcinoma. We used a rat
model of diethylnitrosamine (DENA)-induced LC; a Rat Genome 230
2.0 Array was used to detect gene expression profile of liver tissues
from male rats 5, 8, 12, 16, and 18 weeks following the beginning of
DENA-induced LC. We found 909 known genes, including 637 up-
regulated, 270 down-regulated, and two up/down-regulated genes,
that were significantly changed in expression. Among them, 108
genes were expressed at the Sth, 213 at the 8th, 516 at the 12th, 698
at the 16th, and 506 at the 18th week of DENA-induced LC. Methods
in bioinformatics and systems biology were applied to explore the
correlation between the gene expression profile of rat liver tissue and
liver cancer occurrence at the transcriptional level; 23 physiological
activities were found to be associated with LC. Among these, eight
physiological activities, including stimulus response, inflammation and
immune response, oxidative reduction, cell proliferation, differentiation,
migration, adhesion, and angiogenesis were increased, implying that
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they could play important roles in the occurrence and development of
LC. In addition, carbohydrate, lipid, and organic acid metabolism were
decreased, suggesting that liver injury induced by a carcinogenic agent
has a negative effect on the metabolism of fundamental substances.

Key words: Liver cancer; Gene expression profile; Systems biology;
Physiological activity

INTRODUCTION

The liver is the largest digestive gland in the human body, and carries out a number of
complex functions which are essential for life. Therefore, liver diseases are considered as a great
threat to humans. Generally, primary liver cancer (LC) is one of the most common malignancies
in Asia, especially in China. At present, the mechanism of liver carcinogenesis and treatment of
liver cancer are poorly understood, but high-throughput microarray has emerged as a highly ef-
ficient analysis of liver function abnormalities associated with gene expression profiles. Mean-
while, hepatocarcinogenesis is a long-term, multistep process, and associated with changes in
gene expression profiles. For example, Wurmbach et al. identified a group of gene markers for
tracking the progression of hepatitis C virus (HCV)-induced liver carcinogenesis (Wurmbach et
al., 2007) by utilizing high-density oligonucleotide microarrays. Additionally, Liu et al. found
expression of a total of 694 genes, especially the inflammation response, immune response, and
oxidative stress metabolism-related genes, was significantly changed during the development
of diethylnitrosamine (DENA)-induced LC (Liu et al., 2009). The above studies could help
researchers to explore the pathogenesis of hepatic cancer at the molecular level.

LC is characterized by malignant cell proliferation and growth, and the occurrence of
LC covered the stages of non-specific injury of liver, liver fibrosis, liver cirrhosis, dysplasia
nodules and liver carcinoma (Liu et al., 2009). According to the Edmonson grading system,
the process of DENA-induced LC is divided into five phases: start-up period (1-5 weeks),
interval phase (6-8 weeks), early phase (9-12 weeks), middle phase (13-16 weeks), late phase
(17-20 weeks) (Edmondson and Steiner, 1954). In this study, a rat model of DENA-induced
liver cancer was established, and Rat Genome 230 2.0 Array, consisting of 25,020 genes, was
used to detect gene expression profile of liver tissues from male rats following 5, 8, 12, 16, and
18 weeks of DENA induction. The goal of this study was to explore the correlation between
gene expression profile of rat livers and the occurrence and progression of liver cancer at tran-
scriptional level. These data provide useful information on the global gene expression changes
due to DENA administration and offer important insights into the mechanisms of liver cancer.

MATERIAL AND METHODS
Preparation of rat model of liver cancer

Adult healthy male Sprague-Dawley rats, each weighing 210 + 20 g, were supplied
by the Experimental Animal Center of Henan Normal University, and were housed in a con-

trolled temperature room (22° + 1°C) with a 12:12 h light: dark cycle (light period 6:00 to
18:00). All rats were fed with standard rodent chow diet and allowed free access to distilled
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water. A total of 36 male rats were randomly divided into a control group containing 6 rats
and a diethylnitrosamine (DENA )-induced group containing 30 rats. Rats in the DENA group
underwent intragastric administration of DENA (7 mg/100 g) once a week, consecutively for
20 weeks. Six rats were anesthetized by ether and sacrificed by cervical dislocation at the end
of 0, 5, 8, 12, 16 and 18 weeks after DENA-treatment, respectively. The procured livers were
immediately washed three times in 0.01 M PBS at 4°C. For each rat, approximately 100-200
mg liver tissues were taken from the middle parts of the right lobe on ice and stored at -80°C
until use. All the handling procedures were carried out in accordance with the current Animal
Protection Law of China.

Histopathological detection of liver tissues from a rat model of DENA-induced
liver cancer

Small cuboids of approximately 5 x 5 mm X (2-3) mm from the right lobe of the
liver were fixed with 10% neutral-buffered formalin for 24 h and washed with tap water for
24 h. Then they were routinely dehydrated with a graded series of ethanol, cleared in xylene,
embedded in paraffin, sectioned at 5 um thickness. Afterwards, the slices were stained with
hematoxylin for 3 min, immerged in ammonia water (pH 8.0) for 30 s, and counterstained with
0.5% eosin for 5 min. Finally, they were dehydrated by gradient ethanol, cleared in xylene and
sealed with neutral gum. Histopathologic examinations of the liver sections were conducted
by a pathologist and peer-reviewed.

Rat Genome 230 2.0 Microarray detection

Total RNA was extracted according to the manual of Trizol reagent (Invitrogen Cor-
poration, Carlsbad, USA) and purified following the RNeasy mini protocol (Qiagen Inc.,
Valencia, USA). The quality of total RNA was assessed by optical density measurement at
260/280 nm and agarose electrophoresis (180 V, 0.5 h). It was regarded as a qualified sam-
ple, when 28S RNA to 18S RNA was equal to 2:1. T7-oligo dT(24) (Keck Foundation, New
Haven, USA) SuperScript II RT (Invitrogen Corporation) and 5 pg total RNA was used to
synthesize the first strand of cDNA. The second strand was synthesized using the Affymetrix
c¢DNA single-stranded cDNA synthesis kit. The 12 pL purified cDNA and the reagents in the
GeneChip® in vitro Transcript Labeling Kit (ENZO Biochemical, New York, USA) were used
to synthesize biotin-labeled cRNA. The labeled cRNA was purified using the RNeasy Mini
Kit columns (Qiagen). 15 pL cRNA (1 pg/uL) was incubated with 6 pL 5X fragmentation
buffer and 9 pL RNase free water for 35 min at 94°C, and digested into 35-200 bp cRNA frag-
ments. The prehybridized Rat Genome 230 2.0 Array was put into a hybridization buffer, and
the hybridization was at 45°C in a hybridization oven (Affymetrix) at 60 rpm for 16 h. The
hybridized arrays were washed by wash buffer, and stained in GeneChip® Fluidics Station 450
(Affymetrix). Then the arrays were scanned and imaged with a GeneChip® Scanner 3000 (Af-
fymetrix) (Guo and Xu, 2008; Xu and Chang, 2008).

Identification of rat LC-related genes

The GCOS 2.0 software (Affymetrix) was used to evaluate the images showing gene
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expression abundance generated by Rat Genome 230 2.0 Array. The data for each microar-
ray were normalized by scaling all signals to a target intensity of 500. Each probe set used in
the Affymetrix GeneChip® produced a detection call, with P (present call, requiring a P value
<0.05) indicating good quality, M (marginal call, requiring a 0.05< P value <0.065) indicating
intermediate quality and A (absent call with a p value >0.065) indicating relatively low reli-
ability. Therefore, probe sets that resulted in A calls in the compared groups were removed to
filter false positives. Next, fold change (the ratio of the normalized signal value of LC groups
at each time point to that of the non-control (NC) group) and the Student t-test performance
were applied to select the differentially expressed genes using a fold change threshold of 3.0-
fold and a P < 0.05 to indicate significance. e.g., the gene with >3-fold higher expression than
the NC group was regarded as up-regulation; the gene with >3-fold lower expression than the
NC group, as down-regulation; the gene with 0.33-2.99 fold, as an insignificantly expressed
gene. To minimize the technical errors from microarray analysis, the average value of three
independent detections by Rat Genome 230 2.0 Array was considered as a reliable value. The
coefficients of variation for three technical repeats of each gene were below 6%. The genes
expressed significantly in any one of weeks were considered as rat LC-related genes.

Quantitative real-time RT-PCR

The primers were designed with the Primer Express 2.0 software according to mRNA
sequences of nine target genes trim24, mgmt, spink3, myc, sppl, ggtl, ccndl, alpl, cyplal, and
one internal control f-actin, and synthesized by Shanghai Generay Biotech Co., Ltd. (Table
1). Prior to RT, contaminating genomic DNA was removed by Dnase I (Promega, Mandi-
son, USA). Total RNA (2 ug) was reverse-transcribed using random primers and Reverse
Transcription Kit (Promega). First-strand cDNA samples were subjected to quantitative PCR
amplification by using SYBR® Green I on the Rotor-Gene 3000A (Corbett Robotics, Brisbane,
Australia). All of the PCR cycling conditions were modified to 95°C for 2 min, followed by 40
cycles of 95°C for 15 s, 60°C for 15 s, and 72°C for 30 s. Each sample was analyzed in tripli-
cate. Standard curves were generated from five repeated ten-fold serial dilutions of cDNA, and
the copy numbers of target genes in each milliliter of the sample were calculated according to
their corresponding standard curves (Wang and Xu, 2010).

Relevance analysis of gene synergy to physiological activity

According to the classifications of physiological activities supported from gene on-
cology (GO) (www.geneontology.org), gene expression abundance detected by Rat Genome
230 2.0 chip in rat model of LC, and functions and interactions of genes curated from ResNet
Corel.2 database which is built-in the Pathway Studio 7.0 software, the multivariate statisti-
cal-supporting mathematical model of Wang et al. (Vera and Wolkenhauer, 2008; Wang et al.,
2009) was applied to measures gene synergy collaborated by the related genes with time series
analysis (McGuigan, 2006) and correlation analysis (Chen et al., 2010):

n n
© 0 ,
%:1 él[(xl + X ) k]

n (1)

E=
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where E describes the synergy value of genes participating in a physiological process, and ¢
represents a certain time point. », means correlation coefficient of genes i and k£, X” and X
expression abundances of genes 7 and £ at a certain time point, and n shows the total number
of genes in a certain physiological process. The synergy value of genes participating in a
physiological activity at a certain time point in DENA-induced LC group (£ was significantly
greater than the synergy value in NC group (£ ), meaning that the physiological activity in
LC at this time point is more elevated than in control. When £, is less than £, it means that
the physiological activity in LC at this time point is weaker than in control, and when £ has
no remarkable difference to £, it means that the physiological activities in both LC and NC
group are comparable.

Table 1. Primer sequences used in real-time quantitative RT-PCR.

Genes Accession numbers Primer sequences Amplified products

trim24 NM_001044266 FP: 5'-CAGTGGGAGGGTCTTACAATC-3' 107 bp
RP: 5'-CTGGCCAGGGTCTACACTTG-3'

mgmt NM_012861 FP: 5'-GAAGCCTATTTCCACGAACC-3' 103 bp
RP: 5'-TCCATAACACCTGTCTGGTGAA-3'

spink3 NM 012674 FP: 5'-CACCCTGCACAGTTCGTC-3' 143 bp
RP: 5'-“AGGGCAATTAGGCGTTTT-3'

myc NM 012603 FP: 5-GAGGAGAAACGAGCTGAAGCG-3' 126 bp
RP: 5-TGAACGGACAGGATGTAGGC-3'

sppl NM_012881 FP: 5'-TGATGACGACGACGATGACGATGG-3' 325 bp
RP: 5'-ACGCTGGGCAACTGGGATGACCTT-3'

ggtl NM 053840 FP: 5-TCTTCCAACCCAGCATCCAA-3' 109 bp
RP: 5-CACAAAGCAGGTGTCTTCTCAA-3'

cendl NM 171992 FP: 5'-CCTGACTGCCGAGAAGTTGTGC-3' 251 bp
RP: 5'-TGGAGGGTGGGTTGGAAATGAA-3'

alpl NM_013059 FP: 5'-CATCGGACCCTGCCTTACCA-3' 231 bp
RP: 5'-CGTGTCTCCTCGCCCGTGTT-3'

cyplal NM 012540 FP: 5'-~AGGACAGGAGGCTGGACGAGA-3' 289 bp
RP: 5-ATGGTGAATGGGACAAAGGAT-3'

PB-actin NM 031144 FP: 5'-CATCCGTAAAGACCTCTATGCCAACA-3' 109 bp

RP: 5'-GTGCTAGGAGCCAGGGCAGTAATCT-3"

FP = forward primer; RP = reverse primer.

RESULTS

Histopathological changes of liver tissues during the occurrence and progression of
rat liver cancer

For rat normal livers, the structure of hepatic lobes was clear, with blood filled in cen-
tral vein, orderly arranged hepatocytes in cords radiating from the central vein, and integrated
hepatic sinuses. The hepatocytes were multi-face box-shaped, with one or two dark blue nuclei
located in the cell centre and clear nucleolus (Figure 1A). In the 5th week of rat liver cancer,
several hepatocytes were observed with hydropic degeneration though the structure of hepatic
lobules was still intact (Figure 1B). In the 8th week, the structure of hepatic lobules was dam-
aged, basophilic degeneration or hydropic degeneration of hepatocytes in some areas clearly
visible, and hepatocytes began to proliferate (Figure 1C). In the 12th week, typical false lob-
ules emerged with significant swelling of hepatocytes and proliferation of hepatocytes (Fig-
ure 1D). During the elongation of DEN-induction time, we found hepatocytes in the nodules
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were obviously swollen, and hyperplasic nodules remarkably squeezed the surrounding ones
(Figure 1E). At the 18th week of liver cancer, hepatocyte necrosis was severe with a large and
congestive cavity (L)) in each cell (Figure 1F).

Figure 1. Histopathological changes of liver tissues obtained from model of rats following 0 (A), 5 (B), 8 (C), 12
(D) 16 (E), and 18 (F) weeks of DENA administration (HE, 40x).

Validation of chip results by real-time RT-PCR

The genes surveyed were composed of trim24 down-regulated in liver carcinogenesis,
mgmt and spink3 up-regulated at two time points of LC, myc, sppl, and ggtl up-regulated at
three time points, ccndl up-regulated at four time points, and alp! and cyplal up-regulated
during the entire process of liver carcinogenesis obtained from the chip data. On the other
hand, they were involved in several different GO categories, including stimulus response, de-
toxification, oxidation reduction, immune/inflammatory response, amino acid and protein me-
tabolism, cell proliferation, adhesion, DNA repair, and transcription regulation. Consequently,
the nine genes above were selected for real time RT-PCR assays to evaluate the validity of the
chip data in this study. The results indicated that, on the whole, expression profiles of these
nine genes detected by real-time RT-PCR were in accordance with those obtained by chip
analysis in the 5, 8, 12, 16, and 18th weeks of rat liver cancer, although there were somewhat
differences in the relative degree of up or down-regulation measured by the above two meth-
ods, suggesting array results were reliable (Figure 2).

Global gene expression profiles of liver tissues in rat liver cancer occurrence

Rat Genome 230 2.0 Array was used to detect gene expression profile of liver tissues
on a genome-wide scale from male rats following 5, 8, 12, 16, and 18 weeks of DENA induc-
tion. It was found that 909 known genes, including 637 up-regulated, 270 down-regulated,
and 2 up/down-regulated genes, were significantly changed in expression. Among them, 108
genes were significantly expressed at Sth, 213 at 8th, 516 at 12th, 698 at 16th, and 506 at 18th
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week of LC. According to the GO database, 909 genes above were involved in 23 physiologi-
cal activities. In detail, 48 genes associated with stimulus response, inflammation and immune
response, oxidation reduction, nucleic acid metabolism, cell proliferation, and cell adhesion
were up-regulated, while 39 genes associated with material transport, lipid metabolism, pro-
tein metabolism, cell differentiation, development and biogenesis were down-regulated at the
Sth week of LC. A total of 96 genes associated with stimulus response, inflammation and
immune response, gene transcription, material metabolism, cell proliferation, apoptosis, and
adhesion were up-regulated, whereas 69 genes associated with enzyme linked receptor protein
signaling pathway, material transport, lipid metabolism, and cell migration were down-regu-
lated at the 8th week. A total of 310 genes associated with stimulus response, inflammation
and immune response, enzyme linked receptor protein signaling pathway, gene transcription,
material transport, metabolism of carbohydrate, lipid, nucleic acid, amino acid and protein,
cell proliferation, apoptosis, growth, differentiation, development, biogenesis, regeneration,
migration, adhesion, and angiogenesis were up-regulated, while 120 genes associated with
detoxification, lipid metabolism, organic acid metabolism, and oxidation reduction were
down-regulated at the 12th week. 353 genes associated with stimulus response, inflammation
and immune response, enzyme linked receptor-, small GTPase-, G-protein coupled receptor-,
Wnt-mediated signaling pathways, protein kinase cascade, substance metabolism, cell pro-
liferation, apoptosis, regeneration, migration, adhesion, and angiogenesis were up-regulated,
whereas 135 genes associated with detoxification, material transport, lipid metabolism, or-
ganic acid metabolism, and oxidation reduction were down-regulated at the 16th week. A total
0f 293 genes associated with stimulus response, inflammation and immune response, enzyme
linked receptor-, small GTPase-, Wnt-mediated signaling pathways, gene transcription, sub-
stance metabolism, cell proliferation, apoptosis, regeneration, migration, adhesion, and angio-
genesis were up-regulated, while 122 genes associated with detoxification, material transport,
metabolism of carbohydrate, lipid and organic acid, oxidation reduction, cell differentiation,
and development were down-regulated at the 18th week (Table 2).

trim24 mgmt spink3
16 140 100

14 120
:; 100
o 50
06 | 0,

0 3 3 iz 6 ww 0 H n 6 18W ] s 8 2 16 18W

Relative mRNA abundance

100 LT

00 00
0 3 H 12 16 BW 0 5 8 o) 16 18W 0 5 8 12 16 18W

Progression of DENA-induced rat liver carcinogenesis

Figure 2. Verification of gene expression in DENA-induced rat liver cancer by real-time RT-PCR. The results of
RT-PCR and Rat Genome 230 2.0 Array are presented as a real line and a dotted line, respectively.
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Changes in physiological activities uncovered by gene expression profiles of liver

tissues during rat LC
The mathematical model (£) was used to analyze all of the physiological activities
uncovered by gene expression changes of liver tissues during rat liver carcinogenesis. It was
demonstrated that, in the 5th week, inflammation response, oxidation reduction, and cell pro-
liferation in DENA-induced group were significantly increased than those in NC group, while
lipid and organic acid metabolism were decreased. In the 8th week, the hepatic response to
stimulus and inflammation increased, lipid and organic acid metabolism remaining weak,
while carbohydrate metabolism began to decrease. In the 12th week of rat LC, stimulus re-
sponse and cell proliferation remained augmented, and angiogenesis began to increase. In the
16thweek of rat LC, the activities of stimulus response, oxidation reduction, cell proliferation,
differentiation, migration, adhesion, and angiogenesis were enhanced. In the 18th week of rat
LC, hepatic response to stimulus and inflammation, amino acid metabolism, cell proliferation,
and cell differentiation were augmented. Moreover, weak carbohydrate, lipid and organic acid

metabolism in DENA-induced group were persistently observed at 12-18w (Figure 3).
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Figure 3. Twenty-three kinds of physiological activities of liver tissues during rat liver cancer occurrence. Il
Physiological activities stronger than control; B Physiological activities weaker than control.

DISCUSSION

Previous studies have proved that angiogenesis, inflammation response, materials
metabolism, cell proliferation, growth, apoptosis, migration and adhesion, etc., were closely
related to the occurrence and development of LC. Among them, stimulus response and oxi-
dation reduction, involved in conversion of carcinogenic agents to active form, reduction of
toxicity and elimination of drug/toxin deviations, were closely related to the occurrence and
development of liver tumor (Valles et al., 2003; Xue, 2005). The present study showed that

Genetics and Molecular Research 10 (4): 3480-3513 (2011)
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three members of cytochrome P450s (CYPs) family, including cyplal, cyp4bl, and cypllal,
were up-regulated in LC, and maybe participate in carcinogenesis by converting DENA to
an active electron-withdrawing group (Rodriguez-Antona and Ingelman-Sundberg, 2000).
The significant increases in cyplbl and cyp2c40 expression were observed in breast or liver
carcinomas, providing some therapy targets and potential prognosis factors (McFadyen and
Murray, 2005; Vaclavikova et al., 2007), but their augmented expressions were not found
in our study. Clearly, further investigation is needed to determine the role(s) of CYPs in he-
patocarcinogenesis. gcle, gclm, ggtl, gpx3, and sult2bl involved in sulfur metabolism were
up-regulated at 12-18w in liver cancer, suggesting that they might carry out detoxification of
chemical carcinogen. Glutathione S-transferases Gstpl and Gstm3 were enhanced in expres-
sion at all stages of liver tumor genesis with a 33-fold increase at 12-18w, indicating that reac-
tive oxygen species and anti-oxidation defense existed and they might play important roles in
the progression of liver tumor (Scibior et al., 2008). The expression change of gstm3 in our
research strikingly differed from the down-regulation of gstm3 discovered by Liu et al. (2009)
in liver cancer, which deserves further study. srxnl, tpm4, btg3, and ucp2 associated with
oxidative stress were up-regulated at 12-18w, and the members of aldehyde dehydrogenase,
such as Aldhlal, Aldhla3 and Aldh3al, were greatly increased in mRNA level. Above results
indicated they may be involved in repressing the level of reactive oxygen species during he-
patocarcinogenesis. In addition, Aspbi, hspb2, and hspal2a related to stress response were
up-regulated at one or more than one time points during liver cancer occurrence. The analysis
of synergy value indicated that the £ of stimulus response-related genes was significantly
higher than £_of the control during the entire period of hepatocarcinogenesis, and oxidative
reduction-related genes at 5w and 16w, suggesting stimulus response and oxidative reduction
were strengthened, and may play an important role during the occurrence of liver cancer.

Epidemiology studies showed that chemotactic factors, cytokines, and reactive oxygen
produced by inflammatory cells could mediate malignant transformation of the normal cells
and angiogenesis, and then increase the risk of liver cancer occurrence (Jackson et al., 1997;
Coussens and Werb, 2002). After liver damage was caused by DENA, the hepatic defense
reaction, inflammation and immunity response to external stimuli deserved further investiga-
tion. The transcriptome atlas of liver tissues during LC occurrence showed that chemokine
recruitment-promoting gene cxcl9 was up-regulated at the 5th week, antigen presentation-
promoting gene r¢/-n3 at the 8th week, cd80 associated with T cell activation at the 12th week,
chemokines ccll9, ccl20, cxcll0, cxcl3, cxcrd, cyr6l, and antigen presentation gene rt/-ce2
at the 16th week, antigen presentation molecules r¢/-ba and rtI-bb at the 18th week. On the
other hand, chemokines Ccl2, Ccl21b, and Cxcl16 involved in promoting the activation of
inflammatory cells were augmented in mRNA level at 12-18w, and cell surface molecules
cd24, cd46, and cd74 related to immune cells or inflammatory cell migration, adhesion, and
interaction, were up-regulated during the entire occurrence and development of liver cancer.
The synergy value (E)) of above inflammation and immune response-related genes was sig-
nificantly higher than £ _at the 8th and 18th weeks, implying that inflammation and immune
response were enhanced, which may be related to the up-regulation of many antigen presenta-
tion molecules, chemokines, and cell surface molecules.

Rapid cell proliferation and growth were extensively observed during hepatocarcino-
genesis (Xu et al., 2007). Cell proliferation contains DNA replication, cell cycle, nuclear and
other organelles division, and cytoskeleton-based cytokinesis. In this study, the augmented

Genetics and Molecular Research 10 (4): 3480-3513 (2011) ©FUNPEC-RP www.funpecrp.com.br
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expression of most of cell proliferation genes (i.e., cell cyclin genes ccna2, ccnbl, ccnb?2,
cendl, and cene?, cell division cycle genes cdc2a and cdca3, cyclin-dependent kinase inhibi-
tor cdknla and cdkn2a, cell cycle transition genes gtsel, gspt2, and tpd5211, kinesin family
genes kif2c, chromosome assembly and disassembly genes asf1b and top2a, spindle, centro-
some and cytoskeleton-related genes bubli, spc24, spc25, racgapl, hmmr, stmnl, tubb5, and
anin, DNA damage response and DNA repair-related genes ube2c¢ and uhrfl) was observed
from 5w of the start-up period, and persisted during hepatocarcinogenesis with expression
peak at 16w. Gene synergy analysis showed that cell proliferation was increased during the
entire occurrence and development of liver cancer, suggesting that above-mentioned genes
may coordinate to promote cell proliferation and tissue growth in liver cancer.

It is generally believed that cell adhesion and migration are closely related to angio-
genesis, tumor infiltration and metastasis in liver cancer (Li et al., 2007). Our study found
integrin itgav was up-regulated at the 12th week of liver tumorigenesis, and laminin /amcl,
matrix collagen col27al, col4al, col5a2, col6a3, and col8al, tight junction protein cldn6,
hyaluronan and proteoglycan link protein kapin3, coagulation-promoting gene vwf, neural cell
adhesion molecule ncam 1, and tyrosine kinase receptor ddr2 were increased at the 16th week.
Moreover, tumor cell adhesion, migration-promoting gene fat!, cadherin cdhl3 and pcdhli?7,
lectin clec7a and its related protein Igals3bp, selectin sele, immunoglobulin superfamily mem-
ber thyl, laminin lama3, lama5, lamcl and lamc2, matrix collagen colla2, col3al, col4al,
colda2, col4as, colSa2, col6a2, col6a3, col8al and col27al, integrin itgh6 and itghll, ad-
hesion molecules c¢d9, cd24 and cd44, tight junction protein jam3, cldn4, cldn6, cldn7 and
cldn8, connexin gjbJ5, transmembrane glycoprotein gpnmb, osteopontin spp 1, connective tis-
sue growth factor ctgf, vascular endothelial cell adhesion molecule veaml, vascular smooth
muscle cell migration-promoting gene mfge8, melanoma cell adhesion molecule mcam, and
tyrosine kinase receptor ddrl, G protein-coupled receptor gpr56, signal transduction-related
rhob and rhoc were up-regulated mainly at 12-18w of liver cancer. Synergy value analysis
showed that the synergy values of cell adhesion-, cell migration-related genes were higher than
those in control, and it might correspond to high metabasis activity of tumor cell metabasis.

The formation of new vessels (angiogenesis) is an indispensable process related to
liver cancer (Fernandez et al., 2009), including degradation of vascular basement membrane,
vascular smooth muscle cell and endothelial cell proliferation, migration and adhesion, and
vascular lumen formation of network structure (Carmeliet, 2005). Angiopoietin angptl, vas-
cular lumen formation-promoting gene cxcr4, and vascular permeability-enhancing gene nos2
were up-regulated at the 16th week. Differentiation inhibitor Idl can activate the transcription
of vascular endothelial growth factor (Ling et al., 2005). Transcription factor KIf5 induces
the expression of some angiogenesis-related genes, such as PAI-1, iNOS and VEGF receptors
(Aizawa et al., 2004). Many growth factors (Tgfb2, Ctgf and Pdgfa) and Ptk2b can promote
the proliferation and migration of endothelial cells or smooth muscle cells through multiple
signal pathways. Anxa2 and plasminogen activator Plat are involved in activating proteases
and then promoting the degradation of extracellular matrix. Collagens Collal, Colla2 and
Col3al accelerate the development of blood vessel wall, and Spintl induces the tube forma-
tion of blood vessel. Above-mentioned 12 genes were reinforced in expression at more than
two time points of 12-18w. It was found that the synergy values of angiogenesis-related genes
were greater than £_of the control in the 12 and 16th weeks, meaning that angiogenesis was
increased, which may be highly related to the enhanced expression of above genes.
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The liver is an organ which undertakes the crucial function of metabolism of fun-
damental substances, such as carbohydrate, lipid, amino acid, protein, etc. External stimuli,
such as drugs, poisons, etc. can cause hepatic changes in lipid metabolism, steroid metabo-
lism, and homeostasis (Lockhart et al., 2003; Xu et al., 2005; Rosen et al., 2008). Liu et al.
found glycolysis and fat metabolism had significant changes in the process of tumorigenesis,
providing the essential materials for the growth, hyperplasia, and metastasis of tumor cells
(Liu et al., 2009). In this study, phosphofructokinase 1 liver type (pfkl) and pyruvate kinase
muscle type (pkm?2), two rate-limiting enzymes in glycolysis, were up-regulated in mRNA
level at the 16th and 18th weeks. However, some important genes involved in glycolysis and
gluconeogenesis, such as pfkfb4 regulating the level of fructose 2, 6-bisphosphate, pyruvate
kinase pklr, sds (Ogawa et al., 2002) and g6pc promoting gluconeogenesis, onecut! inducing
gene expression of glucose kinase and glucose-6-phosphase (Lannoy et al., 2002; Beaudry
et al., 2006), and nuclear transcription factors ppargcla, ppplr3c and ppp1r3b, were down-
regulated, which possibly could explain why the synergy values of carbohydrate metabolism-
related genes were was significantly smaller than £ of the control at the period of 8-18w. As for
lipid metabolism-related genes, mogat2 catalyzing monoacylglycerol into 1, 2-diacylglycerol,
apoal and Idlr promoting triacylglycerol transport and storage, pcsk9 negatively regulating
the storage of triacylglycerols (Lambert et al., 2006), cpt/a promoting fatty acid oxidation,
elovl5 specific for very long chain fatty acid elongation, cyp7al in bile acid synthesis, nuclear
receptor nr5a2 inhibiting bile acid synthesis, Asd3b5 and sultlel catalyzing cholesterol into
sex hormone, akricl8 and akricl in steroid hormone metabolism, and multiple genes within
the pathway of cholesterol synthesis, including 3-hydroxy-3-methylglutaryl-Coenzyme A syn-
thase 1 (hmgcesl), isopentenyl-diphosphate delta isomerase (idil), sterol C4 methyl oxidase-
like (sc4mol), and abcg8 involved in cholesterol efflux, were attenuated with the expression
bottom mainly at 12-18w. It was not contrary to the fact that lipid metabolism was decreased
at 5-18w of LC by gene synergy analysis. In addition, the £, of amino acid metabolism was
significantly higher than in the control, which could be explained by the up-regulation of odc!,
thnsll, and pycrl. Moreover, organic acid metabolism was shown by synergy analysis to be
significantly lower during the entire tumoriogenesis, which may be caused by the down-regu-
lation of a variety of fatty acid, amino acid metabolism-related genes. Therefore, lipid, amino
acid and their derivative, organic acid metabolism were attenuated during the occurrence and
development of liver cancer, suggesting that liver injury induced by carcinogenic agent had
negative effect on the metabolism of fundamental substances (Jiang et al., 2007).

Briefly, Rat Genome 230 2.0 Array detection and gene synergy analysis showed that 909
genes, involved in 23 physiological activities, were associated with liver cancer occurrence. In
the future, we will confirm the above results by using gene addition and RNA interference etc.
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