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Introduction
Autosomal dominant polycystic kidney disease (ADPKD) is the 

most common inherited renal disease caused by mutations in Pkd1 
or Pkd2 [1]. This disease is characterized by the formation of fluid-
filled cysts in the kidneys as well as cardiovascular abnormalities 
such as hypertension and aneurysms, which have emerged as a major 
cause of death in patients with ADPKD [2-4]. Polycystin-1 (PC1) and 
polycystin-2 (PC2), encoded by the Pkd1 and Pkd2 gene, respectively, 
are found in various vascular tissues including aorta, intracranial 
arteries, afferent arterioles, mesenteric arteries, portal vein, hepatic 
arteries and placental, where they may play an important role in the 
pathogenesis of cardiovascular abnormalities [5-10].

This review describes the basic structure and function, as well as the 
expression of polycystins (PCs) in the vascular system, and summarizes 
evidence demonstrating that PCs are important for hypertension 
and aneurysms associated with ADPKD. The role of PCs in embryo 
development will also be addressed. 

Structure and Function of PC1 and PC2
PC1 is a large integral membrane protein (~460 kDa) that includes 

11 transmembrane segments with extracellular N- and intracellular 
C-terminal domains. PC1 contains 4,302 amino acids and possesses
a large extracellular domain of approximately 3,000 amino acids
(Figure 1). A number of characteristic protein motifs are contained
in the extracellular domain including leucine-rich repeats flanked by
cysteine-rich domains, a C-type lectin and WSC (cell-wall and stress-
response component) domains, low-density lipoprotein-like domain
(LDL), and PKD repeats with homology to immunoglobulins. The
interaction between these specific domains and extracellular matrix
proteins such as collagen type I, fibronectin, and laminin, indicates
the potential role of PC1 in cell-matrix and cell-cell interactions
[11]. A receptor for the egg jelly (REJ) domain, implicated as a novel
effector site for normal PC1 function, follows downstream of the
PKD repeats. A GPS domain, the potential proteolytic cleavage site,
is situated between the REJ and the first transmembrane segment of
PC1 [12,13]. The 11 transmembrane segments are suggested to interact 
and convey specific protein conformations to PC2 [14]. In addition, the 
first and second transmembrane domains resemble the PLAT domain
of the lipoxgenases [13]. The cytosolic C-terminal domain includes a
coiled-coil domain that has been implicated in interactions with the
C-terminus of PC2 as well as a variety of other proteins involved in
cellular signaling [14-16]. Most PC1 proteins also contain a G protein

activation site, suggesting a potential role in the regulation of G protein 
intracellular signaling [17].

PC2, encoded by Pkd2, contains 968 amino acids (~110 kDa) 
and includes six transmembrane segments with intracellular N- and 
C-terminal domains (Figure 1). The PC2 proteins form a tetramer
which serves as a Ca2+-permeable cationic channel that conducts both
monovalent (Na+, K+) and divalent (Ca2+) ions, with a slightly increased 
selectivity for Ca2+ over monovalent cations [16,18]. A “sensor” region
is expected to be present between transmembrane segment 1 and
transmembrane segment 4 as it is present in other six transmembrane
channels [19]. However, this remains to be proven. Transmembrane
segments 5 and 6 are expected to form the channel pore by homo- or
hetero-tetramer with the P-loop in the center [20,21]. PC2 contains two 
cytosolic extremities with two EF-hands (helix–loop–helix domains that 
bind calcium), two coiled-coil domains, and an Endoplasmic Reticulum 
(ER) retention signal in the C-terminus [22-25]. The EF-hands provide 
a regulatory region for voltage-gated channel inactivation while the
ER retention motif contains two putative phosphorylation sites with
consensus motifs for PKA and PKC [14]. Beside these, cytoskeletal
proteins such as troponin I and tropomyosin-1 can interact directly
with the C-terminal tail of PC2 [26,27].

The interaction between PC1 and PC2 is important for the Ca2+ 
channel function. PC1 is localized at the plasma membrane, whereas 
PC2 is localized both at the plasma membrane and the endoplasmic 
reticulum. PC1 and PC2 can interact with each other via their coiled-
coil domains to form the PC1/PC2 complex [22-25]. Co-expression 
of PC1 and PC2 is necessary to form the functional channel complex 
while elimination of the cytoplasmic domain of either PC1 or PC2 
obliterates the Ca2+-permeable cation conductance in Chinese hamster 
ovary (CHO) cells [16]. Xu et al. observed that isolated PC2 channel 
was inactivated either spontaneously or by switching the holding 
potentials to negative values [28]. This inhibition could be reversed 
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Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) caused by mutations in polycystic kidney disease 

1 or 2 (Pkd1 or Pkd2) gene is the most common inherited renal disease and is characterized by cardiovascular 
abnormalities like hypertension and aneurysms. Polycystin-1 (PC1) and polycystin-2 (PC2), encoded by Pkd1 
and Pkd2 genes, respectively, are detected in the cardiovascular system, indicating that PC1 or PC2 may play 
an important role in cardiovascular function. In the present review, we summarize current findings of PC1 and 
PC2 in cardiovascular regulation, such as hypertension and aneurysms associated with ADPKD and embryonic 
development.

The Function of Polycystin-1 and Polycystin-2 in Cardiovascular System
Cong Qiu1,2 and Jun Yu1,*
1Department of Internal Medicine, Section of Cardiovascular Medicine, Yale University school of Medicine, USA
2State Key Laboratory of Natural Medicines, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing 210009, PR China

Journal of 
Cardiovascular Diseases & DiagnosisJo

ur
na

l o
f C

ar
dio

vascular Diseases &
Diagnosis

ISSN: 2329-9517



Citation: Qiu C, Yu J (2013) The Function of Polycystin-1 and Polycystin-2 in Cardiovascular System. J Cardiovasc Dis Diagn 1: 110. doi:10.4172/2329-
9517.1000110

Page 2 of 6

Volume 1 • Issue 3 • 1000110
J Cardiovasc Dis Diagn
ISSN: 2329-9517 ǛǔǕǕ, an open access journal 

by adding the coiled-coil domain of PC1. Thus, the C-terminal of PC1 
may be an agonist for helping stabilize PC2 channel function [28]. 

The PC1/PC2 complex functions as a flow sensor in mouse 
embryonic renal epithelial cells [29]. Flow-induced PC2-mediated Ca2+ 
influx was observed in mouse embryonic renal epithelial cells with a 
well-developed primary cilia where wild type PC1 and PC2 were co-
localized [29]. Neither PC1 deficient cells nor wild type cells with 
antibodies against either PC1 or PC2 responded to shear stress [29,30]. 
The PC1/PC2 complex may function as a “receptor-ion channel” 
with PC1 transducing environmental signals to PC2 while PC2 
mediates Ca2+ influx [15,31]. PCs may also have important functions 
in cardiovascular biology. PC1 and PC2 were found in the primary 
cilia of vascular endothelial cells and in vascular smooth muscle cells 
(VSMCs). Similar to renal epithelial cells, endothelial cells lacking PC1 
or PC2 did not respond to shear stress (see section entitled “Polycystins 
and Hypertension” for detail) [32,33]. Although interaction between 
PC1 and PC2 was also found in VSMCs, the expression levels of PC1 
and PC2 were dynamic during development [34]. PC1 is expressed at 
significantly higher levels in VSMCs at E17 and newborn compared 
with the adult stage, while PC2 expression is relatively unchanged 
throughout development [34]. This suggests that besides functioning as 
the PC1/PC2 complex, PC1 and PC2 may have additional independent 
roles in the cardiovascular system [35].

Polycystins and Hypertension
Hypertension is common in ADPKD and occurs before the loss 

of kidney function in more than 60% of affected individuals. Pkd1 
patients typically have an early onset of hypertension and occur with 
more frequency than in patients with Pkd2 [31,36]. The average age 
of onset of hypertension is between 30 and 34 years, with men more 
commonly affected than women [2,37,38]. Genetic factors may 
influence hypertension in ADPKD since an increased frequency and 
earlier age of onset of hypertension in ADPKD offspring is associated 
with having an affected parent. Blood pressures are 4 to 6 mmHg 
higher on average in ADPKD children as compared to unaffected age- 
and sex-matched controls [39,40].

The pathogenesis of hypertension in ADPKD is complex and 
depends on many interconnected factors. Two possible theories have 
been proposed to describe the pathogenesis of hypertension in ADPKD. 
In one theory, cilia dysfunction leads to decreased Nitric Oxide (NO) 
production, which causes abnormal thickening of blood vessels [41]. 
In support of this theory, lower plasma concentration of NO was 
detected in PKD patients [42,43]. Dopamine has been suggested as 
potential therapeutic target for PKD patients with hypertention [44]. 
In a dopamine receptor study, the dopamine receptor type 5 (DR5) has 
been shown to play an important role in managing cilia function [45]. 
DR5 activation has been shown to restore cilia function in cells isolated 
from the Tg737orpk/orpk (Oak ridge polycystic kidney disease mice with 
mutations in Tg737, an orthologous gene of Chlamydomonas flagella 
IFT88 which results in cells with no or shortened cilia) and Pkd1-/- mice. 
In contrast, silencing of DR5 abolishes mechano-ciliary function in 
wild type cells. The other theory favors a role of cysts formation, where 
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Figure 1: Structure of polycystin-1 (PC1) and polycystin-2 (PC2) in membrane. PC1 may function as a receptor, and PC2 is a cation-ion channel permeable to Ca2+. 
PC1 and PC2 can interact with each other through the coiled-coil domains at C-terminal to form the PC1/PC2 complex.
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enlargement of the renal cysts cause distortion of renal architecture, 
resulting in intra-renal ischemia and activation of the Renin-
Angiotensin-Aldosterone System (RAAS) [42,46]. Activated RAAS 
has been proposed to cause cardiovascular remodeling and contribute 
to hypertension in PKD patients and PKD mouse models [47-49]. 
The angiotensin-converting enzyme inhibitor and/or the angiotensin 
receptor blocker are still being used for treating PKD patients [50]. 
Endothelin is implicated in cyst formation and hypertension progress 
and plasma concentration of endothelin in ADPKD patients has 
been reported to be higher compared with healthy volunteers, while 
no differences were found between normotensive and hypertensive 
patients in ADPKD group [51,52]. This observation suggests that the 
pathogenesis of hypertension in ADPKD is complex and depends on 
many interconnected factors. 

Similar to its function in kidney epithelial cells, the PC1/PC2 
complex has been implicated in sensing blood flow in vascular 
endothelial cells [32,33]. Interaction between PC1 and PC2 has been 
confirmed by immunoprecipitation study in vascular endothelial 
cells [33]. Embryonic vascular endothelial cells with Pkd1-/- mutation 
failed to transmit extracellular shear stress sensing into intracellular 
Ca2+ signaling and NO synthesis while increased cytosolic Ca2+ and 
NO production were seen in wild type cells [32]. In a study on PC2, 
mouse endothelial cells with knockdown or knockout of Pkd2 were 
incapable of generating NO under fluid shear stress [33]. Abnormal 
localization of either PC1 or PC2 to cilia also impairs flow sensing 
[32,33]. PC1 localized in the basal body of Tg737orpk/orpk endothelial 
cells is insufficient to respond to shear stress [32]. Loss of ciliary PC2 
in isolated endothelial cells from ADPKD patient kidneys also showed 
minimal Ca2+ and NO response to shear stress [33]. 

Although Pkd1-/- and Pkd2-/- endothelial cells failed to respond 
to shear stress, they still showed response to other pharmacological 
stimulation [32,33]. No significant differences in increased cytosolic 
Ca2+ and NO were observed between wild type and Pkd1-/- endothelial 
cells when treated with Acetylcholine (ACh) [32]. Similarly, Pkd2-/- 
endothelial cells did not lose their responsiveness to ATP [33]. These 
studies suggest that ciliary PC1 and PC2 are shear stress-specific 
molecules.

In contrast with Pkd2-/- endothelial cells, Pkd2+/- endothelial cells 
are responsive to shear stress. Increased cytosolic Ca2+ was followed by 
NO production in Pkd2+/- endothelial cells [33]. Similar to the “second-
hit” mechanism has been suggested in cyst formation in ADPKD, Pkd2 
heterozygous vascular endothelia may also require a “second hit” to 
lose their shear response [33,53,54]. 

Interestingly, a marked defect in ACh stimulated endothelial 
dependent vasodilatation was still found in Pkd2+/- mesenteric 
arterioles while these arterioles still exhibited normal responses to 
Sodium Nitroprusside (SNP), Phenylephrine (PE), Potassium Chloride 
(KCl) and pressure, indicating this response is vascular smooth muscle 
independent [55]. However, isolated Pkd2+/- endothelial cells showed 
normal Ca2+ and NO production stimulated by ACh while isolated 
Pkd2+/- VSMCs displayed basal increases in superoxide and SNP-
stimulated peroxynitrite formation [55]. Moreover, serum nitrite levels 
were similar between wild type and Pkd2+/- mice [55]. A further study 
showed that the NO bioavailability was reduced in Pkd2+/- vessels with 
defects in vasodilatation [55].

The de-endothelial arterial vasculatures including aorta and 
resistance (fourth order mesenteric) arteries in Pkd2+/- mice exhibit 
an exaggerated contractile response and increased sensitivity to PE 

as compared to wild type vessels [56]. Further studies showed that 
elevated Smooth Muscle A-Actin (SMA) expression was observed in 
Pkd2+/- arterial smooth muscle cells [56]. Hui et al. reported that these 
abnormal vascular contractions and SMA expression are influenced by 
RhoA hyperactivation and defects in cellular filamentous-to-globular 
(F-to-G)-actin dynamics in Pkd2+/- arteries [57].

Taken together, Pkd-/- endothelial cells lose their ability to generate 
NO in response to fluid shear stress, which may promote high blood 
pressure [32,33]. Nevertheless, these still need to be confirmed in 
Pkd endothelial cell conditional knockout mice. On the other hand, 
haploinsufficiency of Pkd2 is sufficient to elevate SMA expression 
and increase superoxide and SNP-stimulated peroxynitrite formation 
in VSMCs, inducing increased vascular contraction and reduced 
vasodilatation [55-57]. However, no significant differences in blood 
pressure was found between wild type mice and Pkd2+/- mice [55]. 
Again, these questions may be better addressed in the Pkd2 VSMC 
specific knockout mice to gain a better understanding of Pkd function 
in VSMCs in hypertension.

Polycystins and Aneurysms
ADPKD may also cause arterial aneurysms, such as intracranial 

berry aneurysms, which are the leading cause of death in these patients 
[58]. Aneurysms associated with the aorta, coronary arteries, and 
splenic arteries have also been reported in ADPKD patients [59-62].

Genetic factors likely influence the occurrence of aneurysms 
in ADPKD. Familial clustering of intracranial aneurysms has been 
observed where incidences of aneurysms has been reported to be 
almost as five times higher in patients with a family history of ruptured 
intracranial aneurysms than in those without a family history [63,64]. 
Furthermore, ADPKD accounts for 9% of familial intracranial 
aneurysms [65]. 

Aneurysms can occur in patients with mutations in either the Pkd1 
and Pkd2 genes. These mutations can be missense, splice site changes, 
small deletions, or small insertions [66]. The position of the germline 
mutation in Pkd1 is an important factor in aneurysm development. 
In the subsets of the ADPKD patients with aneurysmal rupture, the 
median mutation goes further 5’ compared to those without vascular 
phenotype [67]. Abou Alaiwi et al. found that loss of Pkd1 or Pkd2 
in endothelial cells results in the dysfunction of primary cilia, which 
leads to the abnormal cell differentiation and cellular division. The 
abnormality in cell division is associated with polyploidy formation in 
vascular endothelia, which might be the pathophysiological mark for 
aneurysms [68].

Pkd1 and Pkd2 are also important for maintaining vessel wall 
structural integrity, and mutations in these genes results in abnormal 
vascular wall integrity which can also lead to aneurysms. Reductions 
in Pkd1 transcription levels induce degenerative alterations in 
both the intima and media, resulting in a dissecting aneurysm [69]. 
Furthermore, gross edema and hemorrhage, indicative of severely 
compromised vessel wall integrity, were reported in the Pkd1-/- and 
Pkd2-/- knockout mouse embryos [8,30,70-72].

It has been proposed that loss of Pkd1 or Pkd2 can result in 
overproduction of matrix proteins, which is the common cause for the 
weakening of blood vessel walls. Increased deposition of proteoglycans 
and fibronectin, leading to the thickening of vessel wall media, was 
observed in Pkd1 hypomorphs [69]. The N-terminal extracellular 
domain has been proposed to participate in focal adhesion and cell 
adhesion. Direct binding between isolated PC1 leucine-rich repeats 
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fusion protein and matrix proteins collagen I, fibronectin, and laminin 
has been observed, indicating that PC1 can function as an elastic linkage 
between cells or between cells and extracellular matrix [11,73,74]. In 
addition, overproduction of matrix collagen was also found in Pkd1 
and Pkd2 deficiency zebrafish [75].

Vascular leakage and aneurysms can also be caused by weakened 
VSMCs as a result of apoptosis under fluid mechanical stress. 
Haploinsufficiency of human Pkd2 function leads to decreased 
VSMCs contractility and function [76]. Pkd2+/- VSMCs have defective 
intracellular Ca2+ regulation followed by higher cyclic 3’: 5’-adenosine 
monophosphate (cAMP) concentration compared with wild type 
vessels. The intracellular Ca2+ reduction and cAMP accumulation may 
cause an increase in both cellular proliferation and apoptosis, resulting 
in aneurysms [77]. Interactions between PC1 and PC2 have been 
shown in VSMCs in the sarcoplasmic membrane, suggesting that PC1 
may also be involved in regulating intracellular Ca2+ levels [34]. 

PC1 and PC2 can influence Stretch-Activated Channel (SAC) 
activity to help regulate pressure sensing in arterial myocytes [5]. 
Abnormal SAC activity may contribute to aneurysm formation 
because of increased wall tension. Interestingly, it has been reported 
that the ratio of PC1 to PC2 is important in the regulation of SAC 
activity [5]. SAC activity can be inhibited by PC2 and this was reversed 
by co-expression with PC1 [5]. This study further showed that the 
actin crosslinking protein FLNa is necessary for the SAC inhibition 
by PC2 [5]. Thus, PC1 and PC2 may influence aneurysm formation 
by regulating intracellular Ca2+ concentration induced by pressure via 
SAC in arterial myocytes. However, this hypothesis is remains to be 
experimentally determined.

Polycystins and Embryo Development
PC1 and PC2 are associated with embryo development. 

Developmental retardation of the labyrinth layer of Pkd1-/- placentas 
is apparent as early as E11.5 with increased severity at later time points 
[10]. In other studies, mice with targeted Pkd1 null mutations (at exons 
17-21 or exons 43-46) or Pkd2 null mutations (exon1) die at mid-
embyonic stages with massive hemorrhage or cardiac defects [8,30,70-
72]. The placenta is one of three major organs responsible for Ca2+ 

homeostasis, and a loss of Pkd1 or Pkd2 may disrupt Ca2+ homeostasis 
leading to induce abnormal placenta development [78].

It has been reported that selective inactivation of Pkd1 and Pkd2 in 
endothelial cells resulted in polyhydramnios and abnormalities similar 
to those observed in Pkd1-/- placentas [10]. Increased death in utero 
was observed in the Pkd1 and Pkd2 endothelial specific knockout, 
however, in our hands, the Pkd1 or Pkd2 endothelial knockout mice, 
generated by crossing with the Tie2-Cre (B6.Cg-Tg(Tek-Cre)12Flv) 
transgenic line, were born in Mendelian ratio (unpublished data) [10]. 
This discrepancy could partially due to different Cre mouse lines used 
to induce deletion of loxP flanked PKD1/PKD2 and/or the timing of 
the targeted gene deletion. More detailed future studies are needed to 
resolve the discrepancy.

It seems that PCs are essential for the development of both 
trophoblast and fetal vascular compartment of placenta. Moreover, PCs 
are important in the development and maintenance of the myoelastic 
structural organization of the vasculature.

Conclusions
The findings discussed in this review indicate important functions 

of PC1 and PC2 in the development and homeostasis of cardiovascular 

system. PCs have pivotal roles in hypertension and aneurysms 
associated with ADPKD as well as during placental development. PCs 
can function as a complex or independently. Abnormal expression or 
localization of PC1 or PC2 is associated with cardiovascular defects. 
However, several important questions remain to be answered: What is 
the direct role of PC1 and PC2 in the ADPKD associated cardiovascular 
complications? What are the roles of PC1 and/or PC2 in vascular wall 
cells (endothelial cells, vascular smooth muscle cells and pericytes) in 
vivo. Do the cardiovascular defects observed in ADPKD patients occur 
independent of kidney abnormalities? The answers of these questions 
will enhance our understanding of PCs in cardiovascular system and 
may initiate the discovery of new pharmacological targets that will 
benefit ADPKD patients.
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