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The modern life science industry is facing a real challenge to 
deliver new products to a highly demanding and regulated market. As 
a consequence, bioprocess technology options have become limited 
considering total available manufacturing capacity and process 
efficiency and cost. The bioprocess technology can be divided into 
two main parts, namely upstream (fermentation) and downstream 
(separation and purification).

A critical analysis of the current bioprocess technology reveals 
that the fermentative processes are in a mature phase and numerous 
technological developments in heterologous protein expression are 
already being used.

Rapid developments in biotechnology and the pharmaceutical 
potential of biomolecules are fueling demand for reliable, efficient 
methods to purify preparative amounts of proteins, peptides and 
nucleic acids. The recovery and purification of bio products is based 
on chromatographic separations. However, it still has a significant 
number of challenges to be solved.

Current limitations in bead-packed column-liquid chromatography 
include a relatively time-consuming and high-pressure packing 
process, a high-pressure drop in the columns and the slow diffusion of 
solutes within the pores of the bead matrix.

The low productivity imposed by diffusional limitations, the need 
for multiple chromatographic steps, and the requirement of extensive 
solid separation drives to a technological situation characterized by 
low global product yields. In addition the slow intra-particle diffusion 
of high-molecular-weight solutes such as proteins within the porous 
beads of the industrial columns reduces the dynamic binding capacity.

As a consequence, the separation and purification schemes 
applied in the biopharmaceutical industry for the purification of 
biotherapeutics require novel solutions to improve the downstream 
processing. One strategy for process improvements is the development 
of alternative materials to replace the traditional packed-bed columns.

In the last years, in order to intensificate and integrate the 
downstream processing tasks new porous materials were designed, for 
example microfiltration membranes [1], monolithics [2] cryogeles [3] 
reticulated polyurethane foams (rPUF) [4].

The strategy with these materials is to process directly non-clarified 
homogenate improving product separation by adsorbents with high 
affinity and adsorption capacity, reversible interactions and sufficient 
robustness for process scale applications.

Several approximations have been proposed for the previous 
mentioned intensification/integration. In the last years a capture 
system based on porous monolithic materials (10-100 µm of mean 
pore diameter) called cryogels has been described. These porous 
materials have the capability of processing raw samples without pre-
chromatographic treatment. This property have great implications in 
reducing cost and time of a bioprocess, as well as in simplifying the 
steps of isolating a protein.

There are other materials with a high capacity to absorb water 

(several times its weight) commonly called hydrogels. This property 
allows them to be used in various technological areas [5], for example as 
a material for the purification of proteins. However these materials need 
to be chemically cross-linked to improve the mechanical properties. 
A compromise between the mechanical and adsorptive properties is 
the main weakness. In this type of materials the adsorption process is 
diffusion-limited.

One interesting option to avoid this limitation is to develop a 
continuous porous solid material, called monoliths. In the last decade 
porous monolithic polymeric materials have been extensively studied 
due to their potential applications in the separation of macromolecules 
[6]. The interconnected macroporous channels can facilitate mass 
transport [7,8]. Therefore, monolithic columns with these unique 
structures enable high flow rates at low back pressure without drop 
in column efficiency, resulting in fast separation. Monolithic porous 
materials have the advantage to operate at high flow rates. However, 
these materials have a limited internal surface that provides a low 
availability of functional ligands [9].

A matrix to be selected as a competitive material for protein 
purification should have high adsorptive capacity. One way to increase 
the capacity is to create chains of hydrophilic polymers on the surface 
of a material on which the ligands will be immobilized. To achieve 
this goal there are different procedures. In situ radiation-induced graft 
polymerization is a promising straightforward technique in this area 
[10].

Modification of porous materials surface or in the bulk through the 
direct activation using ionizing radiations, such as electron accelerators 
[11], or gamma rays source [10] have been applied to the development 
of adsorptive materials. Surface modification can confer reactivity 
and new physicochemical properties. Currently, some materials 
are modified in order to use them as new systems for ion exchange 
chromatographic separation [12,13], adsorptive fibers with high 
capacity immobilizing pseudo-affinity ligands [14,15] or as a support 
for immobilization of enzymes and cells [16]. The application of these 
materials to a real purification process has been demonstrated [13,17].

Monoliths and cryogels have very good hydrodynamic properties 
however they have very low adsorption capacities. One attempt to 
improve this property was recently reported by a co-worker research 
group. Cryogels with improved capacity were obtained by the previous 
mentioned technique, radiation-induced graft polymerization [18]. 
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Nevertheless, cryogels have an important challenge to be solved: 
preparation in large scale, therefore these materials will be limited to 
laboratory scale applications.

In order to overcome the preparation of the porous structure, 
in our last research was chosen an industrial source of open-porous 
material. Reticulate polyurethane foams meets with this requirement. 
It is a chemically inert material with tridimensional structure, excellent 
mechanical properties (high resistance and elasticity), bulk availability 
and low commercial cost. rPUF has a high porosity (near 97%) and 
highly structured opened macrostructure. As an elastic material, 
the flexibility of rPUF also provides good stability and resistance to 
compression deformation.

In order to obtain a material with protein adsorption capacity, 
it is proposed to produce a modified reactive foam to be used as 
chromatographic matrix.

Radiation-induced graft polymerization technique is a powerful 
methodology for surface modification. The adequate sample 
preparation and irradiation conditions are the critical issue to success 
in the preparation of a novel material. In a similar way, swelled 
cellulose fibers [19] and cryogels [18] has been successfully modified 
by this technique.

Despite its adsorptive properties, packed-bed chromatography 
normally requires extensive sample preparation, including a high 
degree of clarification in order to avoid column blockage and adsorbent 
fouling. In the last decade, polymeric (macro to mega) porous materials 
have been introduced for biomolecules capture, which, in some cases, 
avoid the extensive removal of biomass from fermentation broths.

Our research group proposed reticulated polyurethane foam 
(rPUF) as base material to be modified in order to obtain a new 
chromatographic matrix because it provides mechanical resistance 
and it’s intrinsically shape (open pore). In Figure 1 it is shown electron 
microscopy images of the base rPUF material and the modified one.

Using rPUF material was avoided disadvantages such as diffusion 
and clogging of classic materials (beads) and resistance of porous 
materials (monoliths and cryogels). Hydrodynamic characterization 
is currently studied in detail in order to obtain the maximum process 
productivity of this novel material.
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Figure 1: SEM images of (A) the base material rPUF (B) modified rPUF.

Other application of the porous materials is like storages materials. 
Its characteristic structure is the responsible of excellent mechanical 
properties, low thermal conductivity, good damping capacity, 
low permeability, low density and the most important one energy 
absorption capacity. Nowadays the trend on the development of 
porous-energy-absorbing materials mainly is focused on polyurethane 
foam [20,21] and foamed aluminum [22,23]. These new storages devices 
are crucial in the energy area because they have useful for conserving 
energy, reducing the environmental impact. Porous materials can be 
impregnated with phase change material for thermal energy storage in 
order to efficiently recover waste heat in the form of latent heat [12]. 
Other example of porous material used as storages is the activated 
porous carbons employed in gas adsorption or gas storage [24] and as a 
catalyst support [25]. Cellular ceramics, other type of porous material, 
are used in several applications in many industrial fields like catalyst 
supports, hot gas filter, particle filter and gas membrane [26].

The versatile applications mentioned before produced an expansion 
of the materials science field especially in the development of new 
porous materials to be applied in bioprocess area
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