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CIS: Carcinoma in situ; CTNNB1: Catenin Beta-1; FGFs: Fibroblast
growth factors; HNSCC: Squamous Head and Neck Cancer; MLPA: 
Multiplex Ligation-dependent Probe Amplification assay; PRKDC: 
Protein Kinase, DNA-activated, Catalytic Polypeptide; PTPs: 
Prenylated Protein Tyrosine Phosphatases; ROC: Receiver Operating 
Characteristic; STCH: Stress 70 Protein Chaperone; TFF1: Trefoil 
Factor-1; TRAIL: Tumor Necrosis Factor-related Apoptosis-inducing 
Ligand

Introduction
The overwhelming majority of mucosal head and neck cancers 

are squamous cell carcinomas (HNSCC), affecting more than 500,000 
people worldwide each year, accounting for 5% of all malignancies 
[1]. In the United States, approximately 52,140 new cases are expected 
in 2011 with an estimated 11,460 deaths for HNC of the oral cavity, 
pharynx, and larynx [2]. According to the SEER data, between 1995 
and 2001, the five-year relative survival rate for patients with localized 
disease (with no evidence of spread) was 82%; patients diagnosed with 
regional disease (with spread to nearby lymph nodes and other organs) 
had a higher five-year survival rate (51%) compared to those who 
had distant disease (with spread to distant organs and lymph nodes) 
(27.6%). 

Cancer is the result of transformation from a normal to a malignant 
cell that results from accumulated mutations. Knowledge of the genetic 
mechanisms that drive cancer growth and development are important 
in understanding the pathogenesis of malignancy and provide insights 
into the tumorigenesis process. Acquisition of a fully malignant 
phenotype in colon cancer is thought to occur from alterations 

of growth-promoting oncogenes and growth-inhibiting cancer 
suppressor genes in a step-wise manner. In HNSCC, the evolution in 
transformation from a normal squamous epithelial cell to a cancer cell 
is likewise assumed to require several steps, some defined by genetic 
alterations. The underlying hypothesis is that a malignant phenotype is 
characterized by specific genetic alternations.

Genetic alterations provide means of identifying tumor cells as well 
as defining changes that presumably determine biological differences 
from their normal counterparts. Chromosome aberrations have 
served as landmarks to identify cancer genes in many tumor types, 
however, individual gene loci altered in tumors cannot be deduced 
solely from the type of chromosome rearrangement [3]. Historically, 
the molecular pathogenesis of cancer has been teased out one gene at a 
time. Recent high-throughput genome-wide candidate strategies such 
as the Multiplex Ligation-dependent Probe Amplification (MLPA) 
assay [4] to identify specific genes for gain and loss concurred with 
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Abstract
In a study of genetic alterations, the Multiplex Ligation-dependent Probe Amplification (MLPA) assay was used 

to measure gain or loss of 113 gene-probes in tumor and non-tumor tissue samples collected from each of the 
220 patients with squamous head and neck cancer (HNSCC). Conditional and marginal models were available; 
both models account for correlated data but have different aspects. The conditional logistic regression model was 
proposed to estimate the subject-specific risk of tumor based on the paired tumor and non-tumor data collection, 
which was in contrast with the marginal model to estimate population-average risk. 

The modeling process included rigorous variable selection, an initial multivariable model, a final model 
selection, and model validation. Genes with individual effect (p<0.01) were considered as candidates for the 
initial multivariable model for tumor. The final model included gene-probes with p<0.01 and estimations of odds 
ratios (OR) 95% Confidence Intervals (CIs) and the model’s predictive ability, measured by the receiver operating 
characteristic curve (ROC). A 10-fold cross-validation was performed to validate the model. Of 113 gene-probes, 
using the conditional approach, 16 genes in 7 chromosomes, remained in the final multivariable model with p<0.01 
and an ROC score of 0.94. The cross-validation showed ROC mean (SD) score of 0.96(0.04). The marginal model, 
in contrast, ended with 8 gene-probes and had an observed ROC of 0.81.

Conclusion: The conditional approach appears to be the model of choice when assessing gene-probe risks of 
subjects with paired data collection and fewer missing covariates, compared to the marginal approach. This multiple 
gene model demonstrated excellent ability to discriminate tumor from non-tumor, and supports its contribution to 
the pathogenesis of HNSCC as well as their potential utility for further markers of early tumor detection.
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chromosomal aberrations, and provide a novel index to estimate the 
extent of genomic abnormality with disease progression [3].

MLPA is a cost effective approach to detect gene alterations of loss 
and gain in a single tube, providing tumor profiles based on multiple 
genes, with relevance in understanding the molecular pathogenesis 
of HNSCC. Because MLPA requires only small amounts of DNA, it 
is ideally suited for DNA from formalin fixed paraffin embedded 
material. Currently, MLPA has been used for validation of array-based 
comparative genomic hybridization (array-CGH) and SNP arrays [5-
8]. More recently, several modifications of the original technique have 
been implemented. MLPA has a potential major role in the analysis of 
common copy number variation in genome-wide association analyses 
[6].

In this study, we hypothesized that MLPA genetic profiles 
characterized tumor from non-tumor in HNSCC patients. Both tumor 
and non-tumor tissues were available from each patient for gene-probe 
measurements using MLPA. A multivariable model is often used when 
multiple genes are involved in prediction(of tumor in this study). This 
approach estimates the joint effect of multiple gene-probes on tumor. 
Available approaches included the conditional logistic regression 
(CLR) and marginal logistic regression (MLR) models [9]. The 
marginal model (or so called population-average) is often contrasted 
with the conditional model, which is a subject-specific model [10]. We 
proposed the conditional model to study genetic profile differences 
between tumor and non-tumor for individual subjects, and describe the 
similarity and differences between marginal and conditional models. 

Materials and Methods
Patients 

This is a prospective study derived from an ongoing cohort of 
patients with primary HNSCC. Patients (n=1000) were included in 
the study cohort if they were 18 years and older and had a biopsy-
proven primary HNSCC diagnosis at Henry Ford Health System from 
1986–2006. The use of formalin-fixed paraffin embedded tissue blocks 
from patients with both tumor and non-tumor records within the same 
biopsy and the collection of related patient information was approved 
by the Henry Ford Health System Institutional Review Board (IRB) 
Committee. 

Each histopathology tissue record underwent the process of 
subsequent lesion microdissection, and DNA extraction for MLPA 
genetic profiles. A subgroup of patients (n=220) with both tumor and 
non-tumor tissue records were included in this study. 

Histopathological evaluation of tumor versus non-tumor 

Pathology review of paraffin embedded tissue sections captured all 
types of lesions in a biopsy to include normal squamous epithelium, 
benign (mild, moderate dysplasia), preneoplastic lesions (severe 
dysplasia/carcinoma in situ) and tumor. Only 3 severe dysplasia and 
1 carcinoma in situ lesions were identified and classified as malignant 
outcomes. 

Processing lesion specimens for molecular analysis

DNA was obtained from either whole 5 micron tissue sections/
blocks or from microdissected tissues sections as previously described 
[11]. The microdissected lesions were mounted on glass slides using a 
single-use-disposable scalpel blade under a dissecting microscope. This 

procedure minimizes mixing of normal and tumor subpopulations, 
and yields lesion and tumor samples estimated to be at least 90% free 
from contamination with normal cells [11,12]. 

Multiplex ligation-dependent probe amplification (MLPA) 
processing 

MLPA is a high throughput assay allowing simultaneous 
interrogation of 41 genes using minute amounts (20 ng) of DNA. 
Validated using real-time PCR, it is ideally suited for DNA from 
formalin-fixed paraffin embedded tissues [3,13-15]. Gene gain and 
loss by MLPA concur with chromosomal aberrations, and provide 
a novel index to estimate the extent of genomic abnormality with 
disease progression [11]. Three gene-probe panels (www.mlpa.com) 
comprising 113 unique genes were examined. The panel primarily 
detects oncogenes and tumor suppressor genes located at chromosomal 
segments, which have been implicated in cancer, including HNSCC, 
and distributed throughout the genome [3,13-15].

For each gene (probe), the area under the peak is expressed as a 
percent of the total surface area of all peaks of a sample in an assay 
run. Relative copy number for each probe is obtained as a ratio of the 
normalized value for each locus (peak) of the sample to that of the 
normal control, and in general copy numbers in the range of 0.75 to 1.3 
is regarded as normal, <0.75 as loss and >1.3 as gain [16], adjusting for 
gender because of chromosome differences. 

Data collection

Demographic information (e.g., age, gender and race) for 220 
patients were collected at time of HNSCC diagnosis. A total of 
1076 tissue samples were derived from 932 tissue blocks, which had 
pathological classification of tumor and non-tumor. Both tumor and 
non-tumor tissue samples were collected from the same subject, and 
the number of samples varied in a range of 1 to 7 per subject and per 
tissue type (tumor or non-tumor). For the majority of patients (86%) 
tumor and non-tumor was collected from separated tissue blocks (37% 
blocks has tumor tissue alone, and 39% of blocks had non-tumor tissue 
alone). Only 14% of tissue blocks had both tumor and non-tumor 
tissues obtained from the same block. Tumor and non-tumor were 
outcomes of interest and they were correlated or clustered within the 
subject. 

A total of 113 gene-probes, with known to be associated in HNSCC 
and others cancers, were interrogated in the paraffin tissue DNA using 
MLPA. The underlying hypothesis was that a set of MLPA gene-probes 
could discriminate tumor from non-tumor.

Statistical methods 

Two analytical approaches, conditional logistic regression (CLR) 
and marginal logistic regression (MLR) models [9] were considered to 
address the correlated or cluster data. 

Conditional model versus marginal model 

We consider observation (Yi, Xi), for i = 1,2, ... N (the number of 
subjects), where, vector Yi‘= (yij) for j = 1,2, ... Ji represents tissue record 
J status with response of value 1 (tumor), or 0 (non-tumor) at patient 
i and Xi‘ = (xijk) represents kth covariate (e.g., Gene-probe) for k = 1,2, 
... K some integer K. Notices that the “paired” of tumor versus non-
tumor responses were collected with unequal numbers of tissue records 
in each subject (cluster) and they are correlated. 
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Suppose ηij is the link function of yij and for binary response, the 
logit link is considered and can be expressed as 
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In practice, two types of statistical models are widely used to 
model binary data while accounting for correlation of the binary 
measurements into the analysis. The first one is conditional/ subject-
specific model and the second is the marginal/ population-averaged 
model. 

Mathematically, the conditional model has a form as described 
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where, υi is a random effect and normal distributed as ~ N (0,λ2) 
for patient i and βk for k = 1,2, ... K are coefficient parameters of the 
covariates, and the marginal model can be expressed as 
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The conditional/random-effect model for binary outcome in Eq (2) 
can be implemented in SAS using PROC LOGISTIC with STRAUM as 
the cluster (subject ID) and the maximum likelihood estimation [17]. 

The random effect only uses data from the individual with 
discordant responses and the covariates. Thus, the concordant 
responses of the individual contribute no information to the likelihood. 
Since conditional likelihood is unaffected by the sampling scheme (e.g., 
retrospective versus prospective sampling) [18], the method can be 
used in a matched case-control study.

Use of the random-effect approach in modeling the tumor versus-
non tumor data is preferred given the prospective nested cohort data 
collection. The random-effect model assumes that the logit varies 
from one individual to the next by υi. This assumption is reasonable 
because each individual has its own unique genetic profile. Thus, this 
variability reflects natural heterogeneity due to unmeasured genetic 
factors among individuals. This heterogeneity is represented by υi for i 
= 1,2, ... N assuming that υi is normally distributed with mean zero and 
variance of λ2.

An advantage of the random-effect models (conditional regression 
models) is that they allow conditional inferences in addition to 
marginal inferences [19]. With random effect model in Eq(2), we 
can obtain not only a conditional estimation of the odds, but also the 
marginal estimate of the odds, see Eq(3). The conditional model takes 
the variation or heterogeneities within individual subject into account, 
while the marginal model considers a population average assuming 
the estimation of odds obtained by integrating out individuals’ 
heterogeneities. Because individuals’ deviations have been eliminated 
in Eq(3) by integration, the estimation of the odds ratio does not 
involve any individual. The two models are equivalent if and only if the 
individuals in the study can be regarded as a random sample from a 
population (behaviors the same), which may not be practical. 

For this “paired” tumor versus non-tumor study, we preferred 
conditional/ random-effect model, given the above discussion. 
However, the marginal approach is still considered to be a valid 
model to handle the “paired” data [20,21]. The marginal model has an 
advantage of accommodating missing covariates or response variables, 
while the conditional model, in contrast, cannot accommodate any 
missing observations.

Modeling 

The modeling process included rigorous variable selection, an initial 
multivariable model, a final model selection and model validation. 
Given the large number of gene-probe covariates involved, the variable 
selection for inclusion in the initial multivariable model is a necessary 
step to avoid the model over-fitting [22]. The univariate analysis 
approach was used for the variable selection. Genes with individual 
risks (p<0.01 based on the univariate analysis) were then considered as 
candidates for the initial multivariable model. The cut-off p<0.01 was 
considered based on the number of gene-probes (m=113) and number 
of subjects (n=220). Neither p-value as 0.2 (testing the risks of clinical 
factors) nor 10-7 (exploring risks of micro-arrays to simultaneously 
measure the mRNA abundance of thousands of genes) was considered. 
Prior to multivariable modeling, genes were evaluated for their 
correlation and missing values. Highly correlated genes (correlation 
coefficient, r, >0.7) or genes with larger missing values (>5%) were 
fitted separately along with other uncorrelated (r<0.7) genes. 

The stepwise model selection approach was considered. The final 
model included genes with p<0.01 along with odds ratios for loss or 
gain as risk predictors and ROC (the receiver operating characteristic 
curve) was calculated to measure the model predictive ability [23]. A 
10-fold cross-validation was performed. The cohort of 220 patients was 
randomly partitioned into 10 experiments. For each k, k = 1,2, ... 10, 9 
experiments except kth experiment were used as training set, and the kth 
experiment was used as test set. We retained genes from scratch (113 
genes) with a training set to build a multivariable model as described 
above and then estimated the ROC score with the test set [22]. The true 
ROC estimation was obtained as the average of ROC values from 10 
test sets. 

Results
The 220 HNSCC patient cohort contributed both tumor and 

non-tumor (control) samples with a total of 1076 tissue samples. 
Race distribution was 50% Caucasian American (CA), 38% African 
American (AA) and 12% other or unknown. Thirty-four percent (34%) 
were males. A patient served as his/her own controls and, therefore, the 
clinical variables were balanced given ‘paired” data collection under the 
conditional approach. 

Of 1076 tissue samples, 513 were non-tumor tissue records (495: 
normal squamous epithelium, 9: benign lesions, 6: mild dysplasia, and 
3: moderate dysplasia), and 563 tumor tissue records (559: tumor, 1: 
severe dysplasia, 3: carcinoma in situ). One-hundred-thirteen (113) 
unique gene-probes were examined for each tissue record for gene 
copy number outcomes of gain, normal, or loss. Gene missing values 
ranged from 0% to 4.2%. Using the conditional model approach, fifty-
three (53) genes were identified with individual effects (p<0.01) and 
correlation among gene-probes was moderate (r<0.50), therefore, 
those genes were considered as the candidate genes for the initial 
multivariable model. 

After the stepwise model selection process, 16 genes remained in 
the multivariable model with p<0.01, estimation of odds ratio (OR) and 
its 95% confidence interval (CI) shown in Tables 1, 2 and 3. The model 
had an excellent predictive ability with an ROC of 0.94. The 16 genes 
in the final model with alterations of loss and/or gain accounted for 
loci along 7 chromosomes: 3, 4, 6, 8, 9, 11, and 21(Tables 1,2 and 3). Of 
these, 50% were altered in both tumor and non-tumor, with loss or gain 
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Effect Chromosome Odds Ratio Estimate Lower CL* Upper CL

TFF1  Loss vs. Normal 21q22.3 3.019 1.514 6.02

TFF1   Gain vs. Normal   0.08 0.024 0.268

PRKDC Loss vs. Normal 8q11 0.276 0.11 0.692

PRKDC Gain vs. Normal   5.449 2.09 14.206

MYC      Loss vs. Normal 8q24.12 0.221 0.097 0.503

MYC      Gain vs. Normal   2.218 1.136 4.332

LTA  Loss vs. Normal 6p21.3 2.156 1.172 3.965

LTA   Gain vs. Normal   0.266 0.108 0.655

IL2  Loss vs. Normal 4q26 3.697 1.774 7.705

IL2 Gain vs. Normal   0.149 0.055 0.407

FGFR1 Loss vs. Normal 8p21 0.275 0.126 0.598

FGFR1  Gain vs. Normal   5.555 1.689 18.267

CTNNB1 Loss vs. Normal 3p22 2.682 1.394 5.162

CTNNB1 Gain vs. Normal   0.323 0.147 0.71

CDKN2A Loss vs. Normal 9p21 1.845 1.013 3.362

CDKN2A Gain vs. Normal   0.14 0.056 0.35
*CL: Confidence Limit

Table 1: Genes with corresponding loss and gain that predict tumor and non-tumor.

Effect Chromosome Odds Ratio Estimate Lower CL* Upper CL

PTP4A3 Loss vs. Normal 8q24.3 0.493 0.214 1.135

PTP4A3 Gain vs. Normal   12.158 3.461 42.71

LMO2   Loss vs. Normal 11p13 4.977 2.16 11.466

LMO2 Gain vs. Normal   0.573 0.205 1.607

FGF3   Loss vs. Normal 11q13 0.882 0.447 1.741

FGF3  Gain vs. Normal   7.819 3.286 18.604

CDKN2B Loss vs. Normal 9p21 3.256 1.676 6.325

CDKN2B Gain vs. Normal   1.168 0.442 3.087

BCL6 Loss vs. Normal 3q27 0.55 0.27 1.12

BCL6   Gain vs. Normal   8.989 3.155 25.612

*CL: Confidence Limit
Table 2: Genes with loss or gain that predict tumor (highlighted in bold).

Effect Chromosome Odds Ratio Estimate Lower CL* Upper CL

STCH  Loss vs. Normal 21q11.1 1.788 0.833 3.839

STCH   Gain vs. Normal   0.124 0.043 0.359

CCND1 Loss vs. Normal 11q13 0.403 0.22 0.736

CCND1  Gain vs. Normal   1.239 0.634 2.421

BAK1  Loss vs. Normal 6p21.3 0.262 0.103 0.666

BAK1   Gain vs. Normal   0.438 0.192 0.999

*CL: Confidence Limit
Table 3: Genes with loss or gain that predict non-tumor (highlighted in bold).

reflective of chromosomal aneuploidy. This copy number instability 
favored loss of CDKN2A (9p21), CTNNB1 (3p21), IL2 (4q26), LTA 
(6p21.3), and TFF1 (21q22.3) in tumor, with corresponding gain in 
non-tumor lesions, and gain of FGFR1 (8p21), c-MYC (8q24.12), 
and PRKDC (8q11) in tumor, with corresponding loss in non-tumor 
(Figure 1,Table 1). Loss of CDKN2B (9p21) and LMO2 (11p13), and 
gain of BCL6 (3q27), FGF3 (11q13), and PTP4A3 (8q24.3) predicted 
tumor (Figure 2,Table 2). Loss of BAK1 (6p21.3) and CCND1 (11q13), 
and gain of STCH (21q11.1) predicted non-tumor (Figure 3,Table 
3). In addition, the model remained unchanged after excluding the 9 

benign lesions (6- mild dysplasia, 3-moderate dysplasia) from the non-
tumor group. The cross-validation showed mean (SD) ROC as 0.96 
(0.04). Model validation based on 53 candidate genes showed an ROC 
score of 0.94 (0.07). 

Including the above mentioned 16 gene-probes into a marginal 
model, 9 gene-probes were significant (p<0.01) after adjusting for other 
variables. The ROC for the MLR 16 gene model was 0.84. Univariate 
analysis, followed by multivariable modeling resulted in forty-three 
(43) candidate genes with individual effects (p<0.01), and 8 genes, 
AR, BCL6 (3q27), CDKN2B (9p21), FGF3 (11q13), IL2 (4q26), c-MYC 
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TFF1   Loss  us Norm

TFF1   Gain us Norm

PRKDC  Loss us Norm

PRKDC    Gain us Norm

MYC   A55  Loss us Norm

MYC   Gain  us  Norm

LTA   Loss  us  Norm

LTA    Gain  us  Norm

IL2     Loss  us  Norm

IL2    Gain   us  Norm

FGFR 1 Loss  us Norm

FGFR 1 Gain  us Norm

CTNNB1 Loss  us Norm

CTNNB1 Gain  us Norm

CDKN2A  Loss  us Norm

CDKN2AGain  us Norm
0                 2                  4                  6                 8                  10               12                14

OddsRatio And 95%C1

Gene With Corresponding loss and gain

Figure 1: Gene alterations of corresponding loss and gain for the 8 genes in the final model that predict tumor (odds ratio > 1) and non-tumor (odds ratio < 1) (Table 
1) and 95% CI (Confidence Interval). Norm: normal copy number.

Genes With loss or gain that predict tumor

PTP4A3 Gain  us Norm

LMO2 Loss  us Norm

FGF3  Gain  us Norm

CDKN2B Loss  us Norm

BCL6  Gain  us Norm
0                   2                    4                    6                   8                  10                 12                 14

Odds   Ratio And 95%C1

Figure 2: Gene alterations (Table 2) that predict tumor with odds ratio >1 and 95% CI (Confidence Interval).  Norm: normal copy number.

(8q24.12), PTP4A3 (8q24.3), and NTF, that remained in the final 
multivariable model with p<0.01 respectively with an ROC of 0.81. Of 
those 8 gene-probes in the final MLR model, 6 probes, except AR and 
NTF, were also retained in the final CLR model. 

Discussion
Our study illustrates that gene copy number alterations can 

distinguish malignant tumor from the non-tumor tissue samples 
(pathologically defined normal tissues). Excluding the benign lesions 

from non-tumor, the model remained the same. A limitation of this 
study is that it was conducted on tumor and non-tumor tissue from 
a cancer cohort. Regardless, multivariate models clearly detected 
significant differences between tumor and non-tumor tissue samples, 
keeping in mind that “normal” tissues in a malignant environment 
may be contaminated. The availability of 47% of tumor samples and 
39% non-tumor samples from separate tissue blocks, with only 14% 
of tumor and non-tumor samples from the same tissue block was an 
important factor in minimizing this contamination. The resultant gene-
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STCH Gain  us Norm

CCND1 Loss us Norm

BAK1  Loss us Norm

BAK1  Gain us Norm

Genes With loss or gain that predict non- tumor

0                                                             1                                                            2                                                              3                                                            4 

Odds   Ratio And 95%C1

Figure 3: Gene alterations (Table 3) that predict non-tumor with odds ratio <1 and 95% CI (Confidence Interval). Norm: normal copy number.

based model is therefore more representative of the clinical setting 
with potential to determine tumor-specific risk profiles in biopsies of 
patients without a clinical diagnosis of HNSCC.  

The multiple 16 gene-probe CLR model demonstrated excellent 
predictive ability to discriminate tumor from non-tumor (ROC=0.94 
based on observed data and 0.96 based on 10-fold validation), and is a 
significant improvement when compared to a single gene model such 
as BAK1, CCD1 or STCH (with observed ROC as 0.67, 0.68, or 0.68, 
respectively). The multiple gene-probes model undoubtedly requires 
validation in an independent cohort with similar patient characteristics.

When compared to the marginal model, the conditional model is 
the preferred analytical approach to deal with the paired case-control 
data. Conditional modeling takes individual variation into account, 
while marginal modeling addresses averages. The model accuracy 
and predictive ability were excellent using the conditional approach 
(ROC=0.94), compared to the marginal approach (ROC=0.84 based on 
16 gene-probes or 0.81 based on the final 8 gene-probe model). The 
predictive ability was improved 12% to 16% by using the CLR model. 
For the “paired” case-control data collected for each subject, the subject 
served as his/her own control using the conditional approach. This 
implies that the known clinical risk factors (e.g., the tumor site, race, 
age, gender, and tumor stage) or unknown factors would be balanced 
within each subject, and therefore, suggests that the “paired” case-
control data collected at each subject level has utility to identify solely a 
gene model. The marginal approach is still considered a valid analytical 
approach although it is less powered, compared to the conditional 
approach. Also, the marginal approach is significantly different (See 
Eq 2 and Eq 3) and can be used to address scientific question (e.g., the 
average risk or effect).

Nevertheless, the conditional approach may be less sufficient or 
even misleading when cases and controls are not paired or the data 
has a large amount of missing observations (>5%). The random effect 
only uses data from the individual with discordant responses and the 

covariates. Thus, the concordant responses of the individual contribute 
no information to the likelihood. The SAS Proc LOGISTIC with 
statement STRATUM (subject ID) will eliminate any unpaired rerecords 
so that the model would be generated based on subpopulation rather 
than the whole population. In contrast to CRL, marginal approach 
(MRL) implemented using Proc SURVEYLOGISTIC, with statement 
STRATUM/CLUSTER (subject ID), accounts for correlations between 
the pairs throughout the maximum likelihood estimation. It models 
marginal distribution of the tumor and treats the correlates data as 
though it were unpaired, and would count for all records. Therefore, 
the analysis is analogous to an unmatched analysis. 

Generalized Estimation Equations (GEE) [24,25] using Proc 
GENMOD in SAS, models the marginal model and accounts for 
correlation throughout the Quasi-likelihood estimation. The latter 
is less restrictive on distribution function with more robust results 
[24,25]. This has been used in many studies including the study of 
paired discordant responses, as well as combination concordances 
and discordances [20,21,26]. However, concerns were noted when 
correlations within a cluster were negative [27]. This was the case 
for our data with discordant pairs. Therefore, if a study is interested 
in the average risks within a population and if the clustered data has 
both concordant and discordant responses, the marginal model can be 
considered. GEE is a cautionary approach when discordances dominate 
or negative corrections are observed [27].

The model’s discriminatory abilities (c-index/ROC of 0.93) 
support molecular distinctiveness of malignant versus non-malignant 
tissue with significant predictive power. Genetic alterations at 16 
chromosomal loci underscore the association of already known 
genes as well as newer gene targets in HNSCC pathogenesis. The 
sixteen gene predictors spanning loci along 7 chromosomes cover 
an array of essential functions that ensure normal homeostasis to 
include DNA repair (PRKDC), initiation of carcinogenesis (TFF1), 
immune surveillance (IL2, LTA), cell cycle regulators (CDKN2A, 
CDKN2B), apoptosis (BAK1, STCH), regulation of cell proliferation 

http://www.ncbi.nlm.nih.gov/sites/?Db=gene&Cmd=retrieve&dopt=full_report&list_uids=5591&log$=genesensor4&logdbfrom=pubmed
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and differentiation (CCND1, FGF3, MYC), transcription factors 
(BCL6), stem cell hematopoesis (LMO2), adhesion, invasion and 
metastasis (CTNNB1, FGFR1), and acquisition of metastatic potential 
of tumor cells (PTP4A3), implicating these genes as key players in the 
tumorigenesis continuum. 

Our data support distinct genetic profiles for tumor and non-
tumor. One of the hallmarks of malignant transformation is genomic
instability, which promotes a wide range of mutations, including
chromosome deletions, gene amplifications, translocations and 

polyploidy [28]. In this study, genomic instability evident from the 
directional loss and gain for several genes, underscored the contribution 
of aneuploidy in early HNSCC tumorigenesis. Analogous to studies, 
where prognostic information is augmented when gene outcomes of 
amplifications and deletions (e.g,, CCND1 and/or MYC amplification, 
in combined with CDKN2A deletion) as compared to analysis of single 
genetic aberrations [29]. The 16 gene alteration compendium in this 
study likely reflects finely choreographed genomic instability events to 
achieve biological distinctiveness. 
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