We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Hypoxia-inducible factor 2α: a novel target in gliomas

    Jaclyn J Renfrow

    *Author for correspondence: Tel.: +1 336 713 6329; Fax: +1 336 716 3065;

    E-mail Address: jrenfrow@wakeheath.edu

    Department of Neurological Surgery, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA

    Brain Tumor Center of Excellence, Wake Forest Comprehensive Cancer Center, Winston-Salem, NC 27157, USA

    ,
    Michael H Soike

    Department of Radiation Oncology, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA

    ,
    Waldemar Debinski

    Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA

    Brain Tumor Center of Excellence, Wake Forest Comprehensive Cancer Center, Winston-Salem, NC 27157, USA

    ,
    Shakti H Ramkissoon

    Department of Pathology, Wake Forest Baptist Medical Center, Winston-Salem, NC27157, USA

    Foundation Medicine, Inc., Morrisville, NC 27560, USA

    ,
    Ryan T Mott

    Department of Pathology, Wake Forest Baptist Medical Center, Winston-Salem, NC27157, USA

    Brain Tumor Center of Excellence, Wake Forest Comprehensive Cancer Center, Winston-Salem, NC 27157, USA

    ,
    Mark B Frenkel

    Department of Neurological Surgery, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA

    ,
    Jann N Sarkaria

    Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA

    ,
    Glenn J Lesser

    Brain Tumor Center of Excellence, Wake Forest Comprehensive Cancer Center, Winston-Salem, NC 27157, USA

    Department of Internal Medicine, Section on Hematology & Oncology, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA

    &
    Roy E Strowd

    Brain Tumor Center of Excellence, Wake Forest Comprehensive Cancer Center, Winston-Salem, NC 27157, USA

    Department of Internal Medicine, Section on Hematology & Oncology, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA

    Department of Neurology, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA

    Published Online:https://doi.org/10.4155/fmc-2018-0163

    Hypoxia is an important contributor to aggressive behavior and resistance mechanisms in glioblastoma. Upregulation of hypoxia inducible transcription factors (HIFs) is the primary adaptive cellular response to a hypoxic environment. While HIF1α has been widely studied in cancer, HIF2α offers a potentially more specific and appealing target in glioblastoma given expression in glioma stem cells and not normal neural progenitors, activation in states of chronic hypoxia and expression that correlates with glioma patient survival. A first-in-class HIF2α inhibitor, PT2385, is in clinical trials for renal cell carcinoma, and provides the first opportunity to therapeutically target this important pathway in glioma biology.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Höckel M, Vaupel P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J. Natl Cancer Inst. 93(4), 266–276 (2001).
    • 2 Axelson H, Fredlund E, Ovenberger M, Landberg G, Pahlman S. Hypoxia-induced dedifferentiation of tumor cells – a mechanism behind heterogeneity and aggressiveness of solid tumors. Semin. Cell Dev. Biol. 16, 554–563 (2005).
    • 3 Harris AL. Hypoxia – a key regulatory factor in tumour growth. Nat. Rev. Cancer 2(1), 38–47 (2002).
    • 4 Heddleston JM, Hitomi M, Venere M et al. Glioma stem cell maintenance: the role of the microenvironment. Curr. Pharm. Des. 17(23), 2386–2401 (2011).
    • 5 Keith B, Johnson RS, Simon MC. HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression. Nat. Rev. Cancer 12(1), 9–22 (2012).
    • 6 Yu T, Tang B, Sun X. Development of inhibitors targeting hypoxia-inducible factor 1 and 2 for cancer therapy. Yonsei Med. J. 58(3), 489 (2017).
    • 7 Colwell N, Larion M, Giles AJ et al. Hypoxia in the glioblastoma microenvironment: shaping the phenotype of cancer stem-like cells. Neuro. Oncol. 19(7), 887–896 (2017).
    • 8 Brat DJ, Castellano-Sanchez AA, Hunter SB et al. Pseudopalisades in glioblastoma are hypoxic, express extracellular matrix proteases, and are formed by an actively migrating cell population. Cancer Res. 64(3), 920–927 (2004).
    • 9 Kayama T, Yoshimoto T, Fujimoto S, Sakurai Y. Intratumoral oxygen pressure in malignant brain tumor. J. Neurosurg. 74(1), 55–59 (1991).
    • 10 Meixensberger J, Dings J, Kuhnigk H, Roosen K. Studies of tissue PO2 in normal and pathological human brain cortex. Acta Neurochir. Suppl. 59, 58–63 (1993).
    • 11 Gerstner ER, Zhang Z, Fink JR et al. ACRIN 6684: assessment of tumor hypoxia in newly diagnosed glioblastoma using 18F-FMISO PET and MRI. Clin. Cancer Res. 22, 5079–5086 (2016).
    • 12 Yamamoto Y, Maeda Y, Kawai N et al. Hypoxia assessed by 18F-fluoromisonidazole positron emission tomography in newly diagnosed gliomas. Nucl. Med. Commun. 33(6), 621–625 (2012).
    • 13 Dong S, Nutt CL, Betensky RA et al. Histology-based expression profiling yields novel prognostic markers in human glioblastoma. J. Neuropathol. Exp. Neurol. 64(11), 948–955 (2005).
    • 14 Raza SM, Lang FF, Aggarwal BB, Fuller GN, Wildrick DM, Sawaya R. Necrosis and glioblastoma: a friend or a foe? A review and a hypothesis. Neurosurgery 51(1), 2–12; discussion 12–13 (2002).
    • 15 Brat DJ, Mapstone TB. Malignant glioma physiology: cellular response to hypoxia and its role in tumor progression. Ann. Intern. Med. 138(8), 659–668 (2003).
    • 16 Heddleston JM, Li Z, McLendon RE, Hjelmeland AB, Rich JN. The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle 8(20), 3274–3284 (2009). • Discusses hypoxia as a trigger for promoting glioblastoma stem cell formation and provides in vivo evidence for hypoxia-inducible factor 2α (HIF2α)-positive effect on flank glioma growth.
    • 17 Ponnala S, Veeravalli KK, Chetty C, Dinh DH, Rao JS. Regulation of DNA repair mechanism in human glioma xenograft cells both in vitro and in vivo in nude mice. PLoS ONE 6(10), e26191 (2011).
    • 18 Koivunen P, Lee S, Duncan CG et al. Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature 483(7390), 484–488 (2012).
    • 19 Wilson WR, Hay MP. Targeting hypoxia in cancer therapy. Nat. Rev. Cancer 11(6), 393–410 (2011). •• Summarizes the malignant effects of hypoxia in cancer and outlines antihypoxia therapeutic approaches including bioreductive prodrugs and molecular inhibitors of the hypoxia pathway.
    • 20 Rey S, Schito L, Wouters BG, Eliasof S, Kerbel RS. Targeting hypoxia-inducible factors for antiangiogenic cancer therapy. Trends Cancer 3(7), 529–541 (2017).
    • 21 Schöning JP, Monteiro M, Gu W. Drug resistance and cancer stem cells: the shared but distinct roles of hypoxia-inducible factors HIF1α and HIF2α. Clin. Exp. Pharmacol. Physiol. 44(2), 153–161 (2017).
    • 22 Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol. Cell. Biol. 12(12), 5447–5454 (1992). • One of the earliest descriptions of HIFs during their discovery.
    • 23 Taylor CT, McElwain JC. Ancient atmospheres and the evolution of oxygen sensing via the hypoxia-inducible factor in metazoans. Physiology 25(5), 272–279 (2010).
    • 24 Gu YZ, Moran SM, Hogenesch JB, Wartman L, Bradfield CA. Molecular characterization and chromosomal localization of a third alpha-class hypoxia inducible factor subunit, HIF3alpha. Gene Expr. 7(3), 205–213 (1998).
    • 25 Slemc L, Kunej T. Transcription factor HIF1A: downstream targets, associated pathways, polymorphic hypoxia response element (HRE) sites, and initiative for standardization of reporting in scientific literature. Tumor Biol. 37(11), 14851–14861 (2016).
    • 26 Ke Q, Costa M. Hypoxia-inducible factor-1 (HIF-1). Mol. Pharmacol. 70(5), 1469–1480 (2006).
    • 27 Denko NC, Fontana LA, Hudson KM et al. Investigating hypoxic tumor physiology through gene expression patterns. Oncogene 22(37), 5907–5914 (2003).
    • 28 Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl Acad. Sci. USA 92(12), 5510–5514 (1995).
    • 29 Semenza GL, Agani F, Booth G et al. Structural and functional analysis of hypoxia-inducible factor 1. Kidney Int. 51(2), 553–555 (1997).
    • 30 Mole DR, Blancher C, Copley RR et al. Genome-wide association of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha DNA binding with expression profiling of hypoxia-inducible transcripts. J. Biol. Chem. 284(25), 16767–16775 (2009). •• Given emerging evidence for biologically distinct functions of HIF1α versus HIF2α genome-wide chromatin immunoprecipitation gene identified individual gene transcription targets specific to each transcription factor. Understanding the genes implicated in each HIF will aid to the biologic understanding of their unique roles in diseases including cancer.
    • 31 Takeda N, O'Dea EL, Doedens A et al. Differential activation and antagonistic function of HIF-{alpha} isoforms in macrophages are essential for NO homeostasis. Genes Dev. 24(5), 491–501 (2010).
    • 32 Eltzschig HK, Bratton DL, Colgan SP. Targeting hypoxia signalling for the treatment of ischaemic and inflammatory diseases. Nat. Rev. Drug Discov. 13(11), 852–869 (2014).
    • 33 Vaupel P, Harrison L. Tumor hypoxia: causative factors, compensatory mechanisms, and cellular response. Oncologist 9(Suppl. 5), 4–9 (2004).
    • 34 Gray LH, Conger AD, Ebert M, Hornsey S, Scott OC. The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br. J. Radiol. 26(312), 638–648 (1953).
    • 35 Littlewood TJ. The impact of hemoglobin levels on treatment outcomes in patients with cancer. Semin. Oncol. 28(2 Suppl., 8), 49–53 (2001).
    • 36 Jeong W, Rapisarda A, Park SR et al. Pilot trial of EZN-2968, an antisense oligonucleotide inhibitor of hypoxia-inducible factor-1 alpha (HIF-1α), in patients with refractory solid tumors. Cancer Chemother. Pharmacol. 73(2), 343–348 (2014).
    • 37 Tibes R, Falchook GS, Von Hoff DD et al. Results from a Phase I, dose-escalation study of PX-478, an orally available inhibitor of HIF-1α. J. Clin. Oncol. 28(15 Suppl.), 3076–3076 (2010).
    • 38 López-Lázaro M. Hypoxia-inducible factor 1 as a possible target for cancer chemoprevention. Cancer Epidemiol. Biomarkers Prev. 15(12), 2332–2335 (2006).
    • 39 Soni S, Padwad YS. HIF-1 in cancer therapy: two decade long story of a transcription factor. Acta Oncol. 56(4), 503–515 (2017).
    • 40 Wallace E. PT2385: HIF-2a antagonist for the treatment of VHL mutant ccRCC. Proceedings of: 12th International VHL Medical Symposium. MA, USA, 7–9 April 2016.
    • 41 Nickerson ML, Jaeger E, Shi Y et al. Improved identification of von Hippel-Lindau gene alterations in clear cell renal tumors. Clin. Cancer Res. 14(15), 4726–4734 (2008).
    • 42 Cowey CL, Rathmell WK. VHL gene mutations in renal cell carcinoma: role as a biomarker of disease outcome and drug efficacy. Curr. Oncol. Rep. 11(2), 94–101 (2009).
    • 43 Sato Y, Yoshizato T, Shiraishi Y et al. Integrated molecular analysis of clear-cell renal cell carcinoma. Nat. Genet. 45(8), 860–867 (2013).
    • 44 Gnarra JR, Tory K, Weng Y et al. Mutations of the VHL tumour suppressor gene in renal carcinoma. Nat. Genet. 7(1), 85–90 (1994).
    • 45 Toledo RA. New HIF2α inhibitors: potential implications as therapeutics for advanced pheochromocytomas and paragangliomas. Endocr. Relat. Cancer 24(9), C9–C19 (2017). •• Discusses cancers with known HIF2α mutations and the recently developed, specific HIF2α inhibitors (PT2385 and PT2399) under investigation for renal cell carcinoma and suggests these drugs may be of use in other malignancies with gain-of-function HIF2α mutations including pheochromocytoma and paragranglioma.
    • 46 Schödel J, Grampp S, Maher ER et al. Hypoxia, hypoxia-inducible transcription factors, and renal cancer. Eur. Urol. 69(4), 646–657 (2016).
    • 47 Sun X, Liu M, Wei Y et al. Overexpression of von Hippel-Lindau tumor suppressor protein and antisense HIF-1alpha eradicates gliomas. Cancer Gene Ther. 13(4), 428–435 (2006).
    • 48 Rong Y, Durden DL, Van Meir EG, Brat DJ. “Pseudopalisading” necrosis in glioblastoma: a familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis. J. Neuropathol. Exp. Neurol. 65(6), 529–539 (2006).
    • 49 D'Alessio A, Proietti G, Lama G et al. Analysis of angiogenesis related factors in glioblastoma, peritumoral tissue and their derived cancer stem cells. Oncotarget 7(48), 78541–78556 (2016).
    • 50 Cooper LAD, Gutman DA, Chisolm C et al. The tumor microenvironment strongly impacts master transcriptional regulators and gene expression class of glioblastoma. Am. J. Pathol. 180(5), 2108–2119 (2012).
    • 51 Phillips HS, Kharbanda S, Chen R et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9(3), 157–173 (2006).
    • 52 Tso C-L, Shintaku P, Chen J et al. Primary glioblastomas express mesenchymal stem-like properties. Mol. Cancer Res. 4(9), 607–619 (2006).
    • 53 Kim Y-W, Koul D, Kim SH et al. Identification of prognostic gene signatures of glioblastoma: a study based on TCGA data analysis. Neuro. Oncol. 15(7), 829–839 (2013).
    • 54 Li Z, Bao S, Wu Q et al. Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 15(6), 501–513 (2009). • In vitro and invivo evidences of HIF2α knockdown effect glioma stem cell and tumor growth along with animal survival.
    • 55 Pietras A, Johnsson AS, Påhlman S. The HIF-2α-driven pseudo-hypoxic phenotype in tumor aggressiveness, differentiation, and vascularization. Curr. Top. Microbiol. Immunol. 345, 1–20 (2010).
    • 56 Pietras A, Katz AM, Ekström EJ et al. Osteopontin-CD44 signaling in the glioma perivascular niche enhances cancer stem cell phenotypes and promotes aggressive tumor growth. Cell Stem Cell 14(3), 357–369 (2014).
    • 57 Rimkus TK, Carpenter RL, Sirkisoon SR et al. Truncated glioma-associated oncogene homolog 1 (tGLI1) mediates mesenchymal glioblastoma via transcriptional activation of CD44. Cancer Res. 78(10), 2589–2600 (2018).
    • 58 Johansson E, Grassi ES, Pantazopoulou V et al. CD44 interacts with HIF-2α to modulate the hypoxic phenotype of perinecrotic and perivascular glioma cells. Cell Rep. 20(7), 1641–1653 (2017).
    • 59 Chaturvedi P, Gilkes DM, Takano N, Semenza GL. Hypoxia-inducible factor-dependent signaling between triple-negative breast cancer cells and mesenchymal stem cells promotes macrophage recruitment. Proc. Natl Acad. Sci. USA 111(20), E2120–E2129 (2014).
    • 60 Gilkes DM, Xiang L, Lee SJ et al. Hypoxia-inducible factors mediate coordinated RhoA-ROCK1 expression and signaling in breast cancer cells. Proc. Natl Acad. Sci. USA 111(3), E384–E393 (2014).
    • 61 Gilkes DM, Chaturvedi P, Bajpai S et al. Collagen prolyl hydroxylases are essential for breast cancer metastasis. Cancer Res. 73(11), 3285–3296 (2013).
    • 62 Gilkes DM, Bajpai S, Wong CC et al. Procollagen lysyl hydroxylase 2 is essential for hypoxia-induced breast cancer metastasis. Mol. Cancer Res. 11(5), 456–466 (2013).
    • 63 Wang X, Dong J, Jia L et al. HIF-2-dependent expression of stem cell factor promotes metastasis in hepatocellular carcinoma. Cancer Lett. 393, 113–124 (2017).
    • 64 Zhuang Z, Yang C, Ryska A et al. HIF2A gain-of-function mutations detected in duodenal gangliocytic paraganglioma. Endocr. Relat. Cancer 23(5), L13–L16 (2016).
    • 65 Toledo RA, Qin Y, Srikantan S et al. In vivo and in vitro oncogenic effects of HIF2A mutations in pheochromocytomas and paragangliomas. Endocr. Relat. Cancer 20(3), 349–359 (2013).
    • 66 Ferrandina G, Zannoni GF, Martinelli E et al. Class III beta-tubulin overexpression is a marker of poor clinical outcome in advanced ovarian cancer patients. Clin. Cancer Res. 12(9), 2774–2779 (2006).
    • 67 Bordji K, Grandval A, Cuhna-Alves L, Lechapt-Zalcman E, Bernaudin M. Hypoxia-inducible factor-2α (HIF-2α) but not HIF-1α, is essential for hypoxic induction of class III β-tubulin expression in human glioblastoma cells. FEBS J. 281(23), 5220–5236 (2014). • HIF1α dominates the early literature in hypoxia research, including hypoxia in oncology. An emerging role is being realized for HIF2α over HIF1α and this report provides evidence supporting HIF2α in glioma malignment behavior.
    • 68 Katsetos CD, Draber P, Kavallaris M. Targeting βIII-tubulin in glioblastoma multiforme: from cell biology and histopathology to cancer therapeutics. Anticancer. Agents Med. Chem. 11(8), 719–728 (2011).
    • 69 Lee G, Auffinger B, Guo D et al. Dedifferentiation of glioma cells to glioma stem-like cells by therapeutic stress-induced HIF signaling in the recurrent GBM model. Mol. Cancer Ther. 15(12), 3064–3076 (2016).
    • 70 Auffinger B, Tobias AL, Han Y et al. Conversion of differentiated cancer cells into cancer stem-like cells in a glioblastoma model after primary chemotherapy. Cell Death Differ. 21(7), 1119–1131 (2014).
    • 71 Mao X, Yan M, Xue X et al. Overexpression of ZNF217 in glioblastoma contributes to the maintenance of glioma stem cells regulated by hypoxia-inducible factors. Lab. Investig. 91(7), 1068–1078 (2011).
    • 72 Sathornsumetee S, Cao Y, Marcello JE et al. Tumor angiogenic and hypoxic profiles predict radiographic response and survival in malignant astrocytoma patients treated with bevacizumab and irinotecan. J. Clin. Oncol. 26(2), 271–278 (2008).
    • 73 Hurwitz H. Integrating the anti-VEGF-A humanized monoclonal antibody bevacizumab with chemotherapy in advanced colorectal cancer. Clin. Colorectal Cancer 4(Suppl. 2), S62–S68 (2004).
    • 74 Ferrara N, Adamis AP. Ten years of anti-vascular endothelial growth factor therapy. Nat. Rev. Drug Discov. 15(6), 385–403 (2016).
    • 75 Zhang H, Qian DZ, Tan YS et al. Digoxin and other cardiac glycosides inhibit HIF-1alpha synthesis and block tumor growth. Proc. Natl Acad. Sci. USA 105(50), 19579–19586 (2008).
    • 76 Kong D, Park EJ, Stephen AG et al. Echinomycin, a small-molecule inhibitor of hypoxia-inducible factor-1 DNA-binding activity. Cancer Res. 65(19), 9047–9055 (2005).
    • 77 Xia Y, Choi H-K, Lee K. Recent advances in hypoxia-inducible factor (HIF)-1 inhibitors. Eur. J. Med. Chem. 49, 24–40 (2012).
    • 78 Kaluz S, Kaluzova M, Stanbridge EJ. Proteasomal inhibition attenuates transcriptional activity of hypoxia-inducible factor 1 (HIF-1) via specific effect on the HIF-1 C-terminal activation domain. Mol. Cell. Biol. 26(15), 5895–5907 (2006).
    • 79 Yeo E-J, Ryu J-H, Cho Y-S et al. Amphotericin B blunts erythropoietin response to hypoxia by reinforcing FIH-mediated repression of HIF-1. Blood 107(3), 916–923 (2006).
    • 80 Kirkpatrick J, Desjardins A, Quinn J et al. Phase II open-label, safety, pharmacokinetic and efficacy study of 2-methoxyestradiol nanocrystal colloidal dispersion administered orally to patients with recurrent glioblastoma multiforme. J. Clin. Oncol. 25(18 Suppl.), 2065–2065 (2007).
    • 81 Erbel PJA, Card PB, Karakuzu O, Bruick RK, Gardner KH. Structural basis for PAS domain heterodimerization in the basic helix-loop-helix-PAS transcription factor hypoxia-inducible factor. Proc. Natl Acad. Sci. USA 100(26), 15504–15509 (2003).
    • 82 Scheuermann TH, Tomchick DR, Machius M, Guo Y, Bruick RK, Gardner KH. Artificial ligand binding within the HIF2 PAS-B domain of the HIF2 transcription factor. Proc. Natl Acad. Sci. USA 106(2), 450–455 (2009).
    • 83 Courtney KD, Infante JR, Lam ET et al. Phase I dose-escalation trial of PT2385, a first-in-class hypoxia-inducible factor-2α antagonist in patients with previously treated advanced clear cell renal cell carcinoma. J. Clin. Oncol. 36(9), 867–874 (2018).
    • 84 Wallace EM, Rizzi JP, Han G et al. A small-molecule antagonist of HIF2a is efficacious in preclinical models of renal cell carcinoma. Cancer Res. 76(18), 5491–5500 (2016). •• Renal cell carcinoma is the first malignancy for testing the newly developed HIF2α inhibitor, PT2385 and this report summarizes the preclinical evidence that led to clinical trial testing.
    • 85 Bhagwat AS, Vakoc CR. Targeting transcription factors in cancer. Trends Cancer 1(1), 53–65 (2015).