Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-23T09:47:43.754Z Has data issue: false hasContentIssue false

The Chowla–Selberg Formula and The Colmez Conjecture

Published online by Cambridge University Press:  20 November 2018

Tonghai Yang*
Affiliation:
Department of Mathematics, University of Wisconsin Madison, Madison, WI 53706, USA, e-mail: thyang@math.wisc.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we reinterpret the Colmez conjecture on the Faltings height of $\text{CM}$ abelian varieties in terms of Hilbert (and Siegel) modular forms. We construct an elliptic modular form involving the Faltings height of a $\text{CM}$ abelian surface and arithmetic intersection numbers, and prove that the Colmez conjecture for $\text{CM}$ abelian surfaces is equivalent to the cuspidality of this modular form.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2010

References

[An] Anderson, G., Logarithmic derivatives of Dirichlet L-functions and the periods of abelian varieties. Compositio Math. 45(1982), no. 3, 315–332.Google Scholar
[BBK] Bruinier, J. H., Burgos, J., and U. Kühn, Borcherds products and arithmetic intersection theory on Hilbert modular surfaces. Duke Math. J. 139(2007), no. 1, 1–88. doi:10.1215/S0012-7094-07-13911-5Google Scholar
[BY] Bruinier, J. H. and Yang, T. H., C M-values of Hilbert modular functions. Invent. Math. 163(2006), no. 2, 229–288. doi:10.1007/s00222-005-0459-7Google Scholar
[Co] Colmez, P., Périods des variétés abéliennes à multiplication complex. Ann. Math. 138(1993), 625–683. doi:10.2307/2946559Google Scholar
[FC] Faltings, G. and Chai, C.-L., Degeneration of Abelian Varieties. Ergebnisse der Mathematik und ihrer Grenzgebiete 22. Springer-Verlag, Berlin, 1990.Google Scholar
[Ge] van der Geer, G., Hilbert Modular Surfaces. Ergebnisse der Mathematik und ihrer Grenzgebiete 16. Springer-Verlag, Berlin, 1988.Google Scholar
[Go] Goren, E. Z., Lectures on Hilbert Modular Varieties and Modular Forms. CR M Monograph Series 14, American Mathematical Society, Providence, RI, 2002.Google Scholar
[Gr1] Gross, B., On the periods of abelian integrals and a formula of Chowla and Selberg.With an appendix by David E. Rohrlich. Invent. Math. 45(1978), no. 2, 193–211. doi:10.1007/BF01390273Google Scholar
[Gr2] Gross, B., Arithmetic on Elliptic Curves with Complex Multiplication. Lecture Notes in Mathematics 776, Springer-Verlag, Berlin, 1980.Google Scholar
[HZ] Hirzebruch, F. and Zagier, D., Intersection numbers of curves on Hilbert modular surfaces and modular forms of Nebentypus. Invent. Math. 36(1976), 57–113. doi:10.1007/BF01390005Google Scholar
[KR] Köhler, K. and Roessler, D., A fixed point formula of Lefschetz type in Arakelov geometry. IV. The modular height of C. M. abelian varieties. J. Reine Angew. Math. 556(2003), 127–148.Google Scholar
[MR] Maillot, V. and Roessler, D., On the periods of motives with complex multiplication and a conjecture of Gross-Deligne. Ann. of Math. 160(2004), no. 2, 727–754. doi:10.4007/annals.2004.160.727Google Scholar
[SC] Selberg, A. and Chowla, C., On Epstein's zeta-function. J. Reine Angew. Math. 227(1967), 86–110.Google Scholar
[VW] van der Poorten, A. and K. S.Williams, Values of the Dedekind Eta function at quadratic irrationalities. Canad. J. Math. 51(1999), no. 1, 176—224Google Scholar
[Ya1] Yang, T-H., An arithmetic intersection formula on Hilbert modular surface. To appear in Amer. J. Math. http://www.math.wisc.edu/-thyang/m=1f.pdf Google Scholar
[Ya2] Yang, T-H., Arithmetic intersection on a Hilbert modular surface and Faltings’ height. http://math.wisc.edu/-thyang/general4L.pdf Google Scholar
[Yo] Yoshida, H., Absolute C M-Periods. Mathematical Surveys and Monographs 106, American Mathematical Society, Providence, RI, 2003.Google Scholar