CC BY-NC-ND 4.0 · World J Nucl Med 2020; 19(02): 137-140
DOI: 10.4103/wjnm.WJNM_64_19
Original Article

The diagnostic accuracy of prospective investigative study of acute pulmonary embolism diagnosis criteria for the detection of acute pulmonary thromboembolism in acutely ill patients

Mehrnaz Gharabaghi
Advanced Thoracic Research Center, Tehran University of Medical Sciences, Tehran, Iran
,
Fatemeh Sarv
Advanced Thoracic Research Center, Tehran University of Medical Sciences, Tehran, Iran
,
Saeed Farzanehfar
1   Department of Nuclear Medicine, Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
,
Mehrshad Abbasi
1   Department of Nuclear Medicine, Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
› Author Affiliations

Abstract

The practical diagnostic performance of Prospective Investigative Study of Acute Pulmonary Embolism Diagnosis (PISAPED) criteria for the detection of acute pulmonary thromboembolism (APTE) in hospitalized patients is not yet well determined. This is the report of the initial results of our recently implemented protocol to employ PISAPED. One hundred and forty-seven pulmonary perfusion scans with 1–3 mCi 99mTc-MAA of patients of a single pulmonologist were included. Patients with suspicious perfusion defects underwent single-photon emission computed tomography. Interpretations were done by consensus of two nuclear medicine specialists. Comparisons were done with chest X-ray or chest computed tomography when available. The interpreters had access to the clinical records. The scans were reported based on the PISAPED criteria as negative or positive for APTE or indeterminate. Patients were followed up for 6.2 ± 5.3 months when the final diagnosis confirming or excluding APTE was achieved. Patients aged 55.9 (17.2) years; 78 (53.1%) of them were female and 64 (43.8%) had high Wells' score. The scans were positive, negative, and indeterminate in 17 (11.6%), 126 (85.7%), and 4 (2.7%) patients, respectively. In 6 out of 147 patients, follow-up was not completed and the final diagnosis was not achieved. APTE was finally diagnosed in 21 (14.3%) patients; 12 (57.1%) of them had positive scans. APTE was excluded in 116 (78.9%) patients; 112 (96.5%) of them had negative scans. The accuracy of the test for the diagnosis of APTE was 87.9%. Lung metastasis was the most frequent reason among false-negative cases. The lung perfusion scan using PISAPED criteria could be used with good accuracy in inpatient settings.

Financial support and sponsorship

Nil.




Publication History

Received: 11 August 2019

Accepted: 15 November 2019

Article published online:
19 April 2022

© 2020. Sociedade Brasileira de Neurocirurgia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Onyedika C, Glaser JE, Freeman LM. Pulmonary embolism: Role of ventilation-perfusion scintigraphy. Semin Nucl Med 2013;43:82-7.
  • 2 PIOPED Investigators. Value of the ventilation/perfusion scan in acute pulmonary embolism. Results of the prospective investigation of pulmonary embolism diagnosis (PIOPED). JAMA 1990;263:2753-9.
  • 3 Biello DR, Mattar AG, McKnight RC, Siegel BA. Ventilation-perfusion studies in suspected pulmonary embolism. AJR Am J Roentgenol 1979;133:1033-7.
  • 4 Kligerman SJ, Lahiji K, Galvin JR, Stokum C, White CS. Missed pulmonary emboli on CT angiography: Assessment with pulmonary embolism-computer-aided detection. AJR Am J Roentgenol 2014;202:65-73.
  • 5 Isidoro J, Gil P, Costa G, Pedroso de Lima J, Alves C, Ferreira NC. Radiation dose comparison between V/P-SPECT and CT-angiography in the diagnosis of pulmonary embolism. Phys Med 2017;41:93-6.
  • 6 Roach PJ, Schembri GP, Bailey DL. V/Q scanning using SPECT and SPECT/CT. J Nucl Med 2013;54:1588-96.
  • 7 Mortensen J, Gutte H. SPECT/CT and pulmonary embolism. Eur J Nucl Med Mol Imaging 2014;41 Suppl 1:S81-90.
  • 8 Kearon C, Akl EA, Ornelas J, Blaivas A, Jimenez D, Bounameaux H, et al. Antithrombotic therapy for VTE disease: CHEST guideline and expert panel report. Chest 2016;149:315-52.
  • 9 Watanabe N, Fettich J, Küçük NÖ, Kraft O, Mut F, Choudhury P, et al. Modified PISAPED criteria in combination with ventilation scintigraphic finding for predicting acute pulmonary embolism. World J Nucl Med 2015;14:178-83.
  • 10 Kukla P, Długopolski R, Krupa E, Furtak R, Wrabec K, Szełemej R, et al. The value of ECG parameters in estimating myocardial injury and establishing prognosis in patients with acute pulmonary embolism. Kardiol Pol 2011;69:933-8.
  • 11 Goldhaber SZ. Echocardiography in the management of pulmonary embolism. Ann Intern Med 2002;136:691-700.
  • 12 Wells PS, Anderson DR, Rodger M, Ginsberg JS, Kearon C, Gent M, et al. Derivation of a simple clinical model to categorize patients probability of pulmonary embolism: Increasing the models utility with the SimpliRED d-dimer. Thromb Haemost 2000;83:416-20.
  • 13 Stein PD, Beemath A, Matta F, Weg JG, Yusen RD, Hales CA, et al. Clinical characteristics of patients with acute pulmonary embolism: Data from PIOPED II. Am J Med 2007;120:871-9.
  • 14 Heit JA, O'Fallon WM, Petterson TM, Lohse CM, Silverstein MD, Mohr DN, et al. Relative impact of risk factors for deep vein thrombosis and pulmonary embolism: A population-based study. Arch Intern Med 2002;162:1245-8.
  • 15 Ibáñez-Bravo S, Banzo I, Quirce R, Martínez-Rodríguez I, Jiménez-Bonilla J, Martínez-Amador N, et al. Ventilation/Perfusion SPECT lung scintigraphy and computed tomography pulmonary angiography in patients with clinical suspicion of pulmonary embolism. Rev Esp Med Nucl Imagen Mol 2016;35:215-20.
  • 16 Miniati M, Pistolesi M, Marini C, Di Ricco G, Formichi B, Prediletto R, et al. Value of perfusion lung scan in the diagnosis of pulmonary embolism: Results of the prospective investigative study of acute pulmonary embolism diagnosis (PISA-PED). Am J Respir Crit Care Med 1996;154:1387-93.
  • 17 Howarth DM, Booker JA, Voutnis DD. Diagnosis of pulmonary embolus using ventilation/perfusion lung scintigraphy: More than 0.5 segment of ventilation/perfusion mismatch is sufficient. Intern Med J 2006;36:281-8.
  • 18 Bajc M, Neilly JB, Miniati M, Schuemichen C, Meignan M, Jonson B. EANM guidelines for ventilation/perfusion scintigraphy: Part 1. Pulmonary imaging with ventilation/perfusion single photon emission tomography. Eur J Nucl Med Mol Imaging 2009;36:1356-70.
  • 19 Skarlovnik A, Hrastnik D, Fettich J, Grmek M. Lung scintigraphy in the diagnosis of pulmonary embolism: Current methods and interpretation criteria in clinical practice. Radiol Oncol 2014;48:113-9.
  • 20 Peiman S, Abbasi M, Allameh SF, Asadi Gharabaghi M, Abtahi H, Safavi E. Subsegmental pulmonary embolism: A narrative review. Thromb Res 2016;138:55-60.
  • 21 Cohen R, Loarte P, Navarro V, Mirrer B. Echocardiographic findings in pulmonary embolism: An important guide for the management of the patient. World J Cardiovasc Dis 2012;2:161.