CC BY-NC-ND 4.0 · J Neuroanaesth Crit Care 2014; 01(02): 108-115
DOI: 10.4103/2348-0548.130386
Review Article
Thieme Medical and Scientific Publishers Private Ltd.

Revisiting intra-arterial drug delivery for treating brain diseases or is it “déjà-vu, all over again”?

Shailendra Joshi
Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, NY
,
Jason A. Ellis
1   Department of Neurosurgery, College of Physicians and Surgeons of Columbia University, New York, NY
,
Charles W. Emala
Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, NY
› Author Affiliations

Subject Editor:
Further Information

Publication History

Publication Date:
30 April 2018 (online)

Abstract

For over six decades intra-arterial (IA) drugs have been sporadically used for the treatment of lethal brain diseases. In recent years considerable advance has been made in the IA treatment of retinoblastomas, liver and locally invasive breast cancers, but relatively little progress has been made in the treatment of brain cancers. High resting blood flow and the presence of the blood-brain barrier (BBB), makes IA delivery to the brain tissue far more challenging, compared to other organs. The lack of advance in the field is also partly due to the inability to understand the complex pharmacokinetics of IA drugs as it is difficult to track drug concentrations in sub-second time frame by conventional chemical methods. The advances in optical imaging now provide unprecedented insights into the pharmacokinetics of IA drug and optical tracer delivery. Novel delivery methods, improved IA drug formulations, and optical pharmacokinetics, present us with untested paradigms in pharmacology that could lead to new therapeutic interventions for brain cancers and stroke. The object of this review is to bring into focus the current practice, problems, and the potential of IA drug delivery for treating brain diseases. A concerted effort is needed at basic sciences (pharmacology and drug imaging), and translational (drug delivery techniques and protocol development) levels by the interventional neuroradiology community to advance the field.

 
  • REFERENCES

  • 1 Klopp CT, Alford TC, Bateman J, Berry GN, Winship T. Fractionated intra-arterial cancer; chemotherapy with methyl bis amine hydrochloride; a preliminary report. Ann Surg 1950; 132: 811-32
  • 2 Bonner CD, Thurman A, Homburger F. A critical study of regional intra-arterial nitrogen mustard therapy in cancer. Ann Surg 1952; 136: 912-8
  • 3 Westbury G. Treatment of advanced cancer by extracorporeal perfusion and continuous intra-arterial infusion. Proc R Soc Med 1962; 55: 643-6
  • 4 Westbury G. Continuous intra-arterial infusion and intermittent intra-arterial injection. Proc R Soc Med 1963; 56: 655-8
  • 5 Boockvar JA, Tsiouris AJ, Hofstetter CP, Kovanlikaya I, Fralin S, Kesavabhotla K. et al. Safety and maximum tolerated dose of superselective intraarterial cerebral infusion of bevacizumab after osmotic blood-brain barrier disruption for recurrent malignant glioma. Clinical article. J Neurosurg 2011; 114: 624-32
  • 6 Riina HA, Burkhardt JK, Santillan A, Bassani L, Patsalides A, Boockvar JA. Short-term clinico-radiographic response to super-selective intra-arterial cerebral infusion of Bevacizumab for the treatment of vestibular schwannomas in Neurofibromatosis type 2. Interv Neuroradiol 2012; 18: 127-32
  • 7 Riina HA, Fraser JF, Fralin S, Knopman J, Scheff RJ, Boockvar JA. Superselective intraarterial cerebral infusion of bevacizumab: A revival of interventional neurooncology for malignant glioma. J Exp Ther Oncol 2009; 8: 145-50
  • 8 Shin BJ, Burkhardt JK, Riina HA, Boockvar JA. Superselective intra-arterial cerebral infusion of novel agents after blood-brain disruption for the treatment of recurrent glioblastoma multiforme: A technical case series. Neurosurg Clin North Am 2012; 23: 323-9
  • 9 Wallace S, Carrasco CH, Charnsangavej C, Richli WR, Wright K, Gianturco C. Hepatic artery infusion and chemoembolization in the management of liver metastases. Cardiovasc Intervent Radiol 1990; 13: 153-60
  • 10 Aigner KR. Intra-arterial infusion: Overview and novel approaches. Semin Surg Oncol 1998; 14: 248-53
  • 11 Abramson DH, Francis JH, Dunkel IJ, Marr BP, Brodie SE, Gobin YP. Ophthalmic artery chemosurgery for retinoblastoma prevents new intraocular tumors. Ophthalmology 2013; 120: 560-5
  • 12 Francis JH, Barker CA, Wolden SL, McCormick B, Segal K, Cohen G. et al. Salvage/adjuvant brachytherapy after ophthalmic artery chemosurgery for intraocular retinoblastoma. Int J Radiat Oncol Biol Phys 2013; 87: 517-23
  • 13 Francis JH, Gobin YP, Brodie SE, Marr BP, Dunkel IJ, Abramson DH. Experience of intra-arterial chemosurgery with single agent carboplatin for retinoblastoma. Br J Ophthalmol 2012; 96: 1270-1
  • 14 Francis JH, Gobin YP, Dunkel IJ, Marr BP, Brodie SE, Jonna G. et al. Carboplatin +/− topotecan ophthalmic artery chemosurgery for intraocular retinoblastoma. PLoS One 2013; 8: e72441
  • 15 Gobin YP, Dunkel IJ, Marr BP, Francis JH, Brodie SE, Abramson DH. Combined, sequential intravenous and intra-arterial chemotherapy (bridge chemotherapy) for young infants with retinoblastoma. PLoS One 2012; 7: e44322
  • 16 Ciccone A, Valvassori L, Nichelatti M, Sgoifo A, Ponzio M, Sterzi R. et al. SYNTHESIS Expansion Investigators. Endovascular treatment for acute ischemic stroke. N Engl J Med 2013; 368: 904-13
  • 17 Duraes AR, Brito JC. Images in clinical medicine. Selective intraarterial thrombolysis for cardioembolic stroke. N Eng J Med 2012; 367: e24
  • 18 Kim JW, Jeon P, Kim GM, Bang OY, Byun HS, Kim KH. Local intraarterial tirofiban after formation of anterograde flow in patients with acute ischemic stroke: Preliminary experience and short term follow-up results. Clini Neurol Neurosurg 2012; 114: 1316-9
  • 19 Park H, Hwang GJ, Jin SC, Bang JS, Oh CW, Kwon OK. Intra-arterial thrombolysis using double devices: Mechanicomechanical or chemicomechanical techniques. J Korean Neurosurg Soc 2012; 51: 75-80
  • 20 Flexman AM, Ryerson CJ, Talke PO. Hemodynamic stability after intraarterial injection of verapamil for cerebral vasospasm. Anesth Analg 2012; 114: 1292-6
  • 21 Kerz T, Boor S, Beyer C, Welschehold S, Schuessler A, Oertel J. Effect of intraarterial papaverine or nimodipine on vessel diameter in patients with cerebral vasospasm after subarachnoid hemorrhage. Br J Neurosurg 2012; 26: 517-24
  • 22 Weant KA, Ramsey 3rd CN, Cook AM. Role of intraarterial therapy for cerebral vasospasm secondary to aneurysmal subarachnoid hemorrhage. Pharmacotherapy 2010; 30: 405-17
  • 23 Wolf S, Martin H, Landscheidt JF, Rodiek SO, Schurer L, Lumenta CB. Continuous selective intraarterial infusion of nimodipine for therapy of refractory cerebral vasospasm. Neurocrit Care 2010; 12: 346-51
  • 24 Firat MM, Gelebek V, Orer HS, Belen D, Firat AK, Balkanci F. Selective intraarterial nimodipine treatment in an experimental subarachnoid hemorrhage model. AJNR Am J Neuroradiol 2005; 26: 1357-62
  • 25 Yokota H, Nakabayashi M, Fuse A, Mashiko K, Yamamoto Y, Henmi H. et al. Continuous intracarotid infusion of mannitol in severe head injury. No Shinkei Geka 1993; 21: 205-11
  • 26 Domanskaia IA, Kukushkin AA, Mazurok II, Il'in KL. The regional use of antibiotics in treating craniocerebral trauma and suppurative complications. Vestn Khir Im I I Grek 1993; 150: 53-6
  • 27 Kudriavtsev AE, Shikov VG. Intracarotid infusion of drugs in the treatment of purulent meningitis. Sov Med. 1976: 55-7
  • 28 Wada J. A new method for the determination of the side of cerebral dominance. A preliminary report of intracarotid injection of sodium amytal in man. Igaku to Seibutsugaki 1949; 14: 221-2
  • 29 Wada J, Rassmussen T. Intracarotid injection of sodium amytal for the lateralization of cerebral speech dominance. 1960. J Neurosurg 2007; 106: 1117-33
  • 30 Wagner K, Hader C, Metternich B, Buschmann F, Schwarzwald R, Schulze-Bonhage A. Who needs a Wada test? Present clinical indications for amobarbital procedures. J Neurol Neurosurg Psychiatry 2012; 83: 503-9
  • 31 Shah AK, Atkinson MD, Gupta P, Zak I, Watson CE, Rothermel R. et al. Transient shivering during Wada test provides insight into human thermoregulation. Epilepsia 2010; 51: 745-51
  • 32 Takayama M, Miyamoto S, Ikeda A, Mikuni N, Takahashi JB, Usui K. et al. Intracarotid propofol test for speech and memory dominance in man. Neurology 2004; 63: 510-5
  • 33 Castillo M, Mukherji SK, McCartney WH. Cerebral amobarbital sodium distribution during Wada testing: Utility of digital subtraction angiography and single-photon emission tomography. Neuroradiology 2000; 42: 814-7
  • 34 Joshi S, Meyers PM, Ornstein E. Intracarotid delivery of drugs: The potential and the pitfalls. Anesthesiology 2008; 109: 543-64
  • 35 Bourassa MG. The history of cardiac catheterization. Can J Cardiol 2005; 21: 1011-4
  • 36 French JD, West PM, Von Amerongen FK, Magoun HW. Effects of intracarotid administration of nitrogen mustard on normal brain and brain tumors. J Neurosurg 1952; 9: 378-89
  • 37 Klopp CT, Alford TC, Bateman J, Berry GN, Winship T. Fractionated intra-arterial cancer; chemotherapy with methyl bis amine hydrochloride; a preliminary report. Trans Meet Am Surg Assoc Am Surg Assoc 1950; 68: 490-511
  • 38 Wilson CB. Chemotherapy of brain tumors by continuous arterial infusion. Surgery 1964; 55: 640-53
  • 39 Wilson CB. Chemotherapy of brain tumors. Adv Neurol 1976; 15: 361-7
  • 40 Wilson CB, Gutin P, Boldrey EB, Drafts D, Levin VA, Enot KJ. Single-agent chemotherapy of brain tumors. A five-year review. Arch Neurol 1976; 33: 739-44
  • 41 Rapoport SI, Hori M, Klatzo I. Reversible osmotic opening of the blood-brain barrier. Science 1971; 173: 1026-8
  • 42 Oldfield EH, Dedrick RL, Chatterji DC, Yeager RL, Girton ME, Kornblith PL. et al. Arterial drug infusion with extracorporeal removal. II. Internal carotid carmustine in the rhesus monkey. Cancer Treat Rep 1985; 69: 293-303
  • 43 Oldfield EH, Clark WC, Dedrick RL, Egorin MJ, Austin HA, DeVroom HD. et al. Reduced systemic drug exposure by combining intraarterial cis-diamminedichloroplatinum (II) with hemodialysis of regional venous drainage. Cancer Res 1987; 47: 1962-7
  • 44 Oldfield EH, Dedrick RL, Yeager RL, Clark WC, DeVroom HL, Chatterji DC. et al. Reduced systemic drug exposure by combining intra-arterial chemotherapy with hemoperfusion of regional venous drainage. J Neurosurg 1985; 63: 726-32
  • 45 Dedrick RL, Oldfield EH, Collins JM. Arterial drug infusion with extracorporeal removal. I. Theoretic basis with particular reference to the brain. Cancer Treat Rep 1984; 68: 373-80
  • 46 Pickrell L, Purvin V. Ischemic optic neuropathy secondary to intracarotid infusion of BCNU. J Clin Neuroophthalmol 1987; 7: 87-92
  • 47 Di Chiro G, Oldfield E, Wright DC, De Michele D, Katz DA, Patronas NJ. et al. Cerebral necrosis after radiotherapy and/or intraarterial chemotherapy for brain tumors: PET and neuropathologic studies. AJR Am J Roentgenol 1988; 150: 189-97
  • 48 Tonn JC, Roosen K, Schachenmayr W. Brain necroses after intraarterial chemotherapy and irradiation of malignant gliomas: A complication of both ACNU and BCNU?. J Neurooncol 1991; 11: 241-2
  • 49 Basso U, Lonardi S, Brandes AA. Is intra-arterial chemotherapy useful in high-grade gliomas?. Expert Rev Anticancer Ther 2002; 2: 507-19
  • 50 Suda K, Nakasu S, Saito A. Ocular complication of combined intracarotid chemotherapy and osmotic blood-brain barrier disruption. Nihon Geka Hokan 1985; 54: 359-63
  • 51 Gobin YP, Cloughesy TF, Chow KL, Duckwiler GR, Sayre JW, Milanese K. et al. Intraarterial chemotherapy for brain tumors by using a spatial dose fractionation algorithm and pulsatile delivery. Radiology 2001; 218: 724-32
  • 52 Neuwelt E, Abbott NJ, Abrey L, Banks WA, Blakley B, Davis T. et al. Strategies to advance translational research into brain barriers. Lancet Neurol 2008; 7: 84-96
  • 53 Hilal SK, Sane P, Mawad ME, Michelsen WJ. Therapeutic interventional radiological procedures in neuroradiology. In: Abrams H. editor. Angiography. 3rd ed.. Boston: Little, Brown; 1983. p. 2223-55
  • 54 Pile-Spellman J. Endovascular therapeutic neuroradiology. Ch. 18. In: Taveras JM. editor. Neuroradiology. 3rd ed.. Baltimore: Williams and Wilkins; 1996. p. 1045-179
  • 55 Dedrick RL. Arterial drug infusion: Pharmacokinetic problems and pitfalls. J Natl Cancer Inst 1988; 80: 84-9
  • 56 Lutz RJ, Dedrick RL, Boretos JW, Oldfield EH, Blacklock JB, Doppman JL. Mixing studies during intracarotid artery infusions in an in vitro model.. J Neurosurg 1986; 64: 277-83
  • 57 Saris SC, Blasberg RG, Carson RE, deVroom HL, Lutz R, Dedrick RL. et al. Intravascular streaming during carotid artery infusions. Demonstration in humans and reduction using diastole-phased pulsatile administration. J Neurosurg 1991; 74: 763-72
  • 58 Saris SC, Shook DR, Blasberg RG, Dedrick RL, Doppman JL, Bankiewicz KS. et al. Carotid artery mixing with diastole-phased pulsed drug infusion. J Neurosurg 1987; 67: 721-5
  • 59 Saris SC, Wright DC, Oldfield EH, Blasberg RG. Intravascular streaming and variable delivery to brain following carotid artery infusions in the Sprague-Dawley rat. J Cereb Blood Flow Metab 1988; 8: 116-20
  • 60 Dedrick RL. Interspecies scaling of regional drug delivery. J Pharm Sci 1986; 75: 1047-52
  • 61 Yamane T, Kaneko A, Mohri M. The technique of ophthalmic arterial infusion therapy for patients with intraocular retinoblastoma. Int J Clin Oncol 2004; 9: 69-73
  • 62 Pile-Spellman J, Young WL, Joshi S, Duong DH, Vang MC, Hartmann A. et al. Adenosine-induced cardiac pause for endovascular embolization of cerebral arteriovenous malformations: Technical case report. Neurosurgery 1999; 44: 881-6
  • 63 Hashimoto T, Young WL, Davis CC, Joshi S, Ostapkovich ND. Cardiac pause for deliberate systemic hypotension: Dose-response characteristics of adenosine (abstract). Anesthesiology 1999; 91: A191
  • 64 Hashimoto T, Young WL, Aagaard BD, Joshi S, Ostapkovich ND, Pile-Spellman J. Adenosine-induced ventricular asystole to induce transient profound systemic hypotension in patients undergoing endovascular therapy: Dose-response characteristics. Anesthesiology 2000; 93: 998-1001
  • 65 Joshi S, Wang M, Etu JJ, Pile-Spellman J. Bolus configuration affects dose requirements of intracarotid propofol for electroencephalographic silence. Anesth Analg 2006; 102: 1816-22
  • 66 Wang M, Joshi S. Electrocerebral silence after intracarotid propofol injection is a function of transit time. Anesth Analg 2007; 104: 1498-503
  • 67 Joshi S, SMR. Wang M, Chaudhuri D, Straubinger N, Straubinger R. et al. The Effectiveness of transient cerebral hypoperfusion assisted intra-arterial delivery of cationic liposomes. J Neurosurg Anesthesiol 2013; 25: 488-9
  • 68 Kemeny M. Hepatic artery infusion of chemotherapy as a treatment for hepatic metastases from colorectal cancer. Cancer J 2002; 8: S82-8
  • 69 Stratmann SL. Hepatic artery chemotherapy in the management of colorectal metastases. Proc (Bayl Univ Med Cent) 2002; 15: 376-9
  • 70 Sigurdson ER, Ridge JA, Daly JM. Fluorodeoxyuridine uptake by human colorectal hepatic metastases after hepatic artery infusion. Surgery 1986; 100: 285-91
  • 71 Zhao M, Chang J, Fu X, Liang C, Liang S, Yan R. et al. Nano-sized cationic polymeric magnetic liposomes significantly improves drug delivery to the brain in rats. J Drug Target 2012; 20: 416-21
  • 72 Joshi S, Straubinger R, Singh-Moon R, Wang M, Rai R, Bigio I. Surface charge manipulation of liposomes to enhance intraarterial delivery. J Neurosurg Anesthesiol 2012; 24: 492-3
  • 73 Pardridge WM. Lipid mediated transport and carrier-mediated transport. Ch 3. In: Pardridge WM. editor. Brain drug targeting, the future of drug development. Cambridge, UK: Cambridge University Press; 2010. p. 36-81
  • 74 Greig NH, Daly EM, Sweeney DJ, Rapoport SI. Pharmacokinetics of chlorambucil-tertiary butyl ester, a lipophilic chlorambucil derivative that achieves and maintains high concentrations in brain. Cancer Chemother Pharmacol 1990; 25: 320-5
  • 75 Pardridge WM. Blood-brain barrier transport mechanisms. In: Welch KM, Capalan LR, Reis DJ, Siejo BJ, Weir B. editors Primer on Cerebrovascular Diseases. 1997. p. 21-5
  • 76 Pardridge WM, Buciak JL, Friden PM. Selective transport of an anti-transferrin receptor antibody through the blood-brain barrier in vivo . J Pharmacol Exp Ther 1991; 259: 66-70
  • 77 Shi N, Pardridge WM. Noninvasive gene targeting to the brain. Proc Natl Acad Sci U S A 2000; 97: 7567-72
  • 78 Friden PM, Olson TS, Obar R, Walus LR, Putney SD. Characterization, receptor mapping and blood-brain barrier transcytosis of antibodies to the human transferrin receptor. J Pharmacol Exp Ther 1996; 278: 1491-8
  • 79 Prior R, Reifenberger G, Wechsler W. Transferrin receptor expression in tumours of the human nervous system: Relation to tumour type, grading and tumour growth fraction. Virchows Arch A Pathol Anat Histopathol 1990; 416: 491-6
  • 80 Hardebo JE, Kahrstrom J. Endothelial negative surface charge areas and blood-brain barrier function. Acta Physiol Scand 1985; 125: 495-9
  • 81 Westergren I, Johansson BB. Altering the blood-brain barrier in the rat by intracarotid infusion of polycations: A comparison between protamine, poly-L-lysine and poly-L-arginine. Acta Physiol Scand 1993; 149: 99-104
  • 82 Pardridge WM, Triguero D, Buciak J. Transport of histone through the blood-brain barrier. J Pharmacol Exp Ther 1989; 251: 821-6
  • 83 Strausbaugh LJ, Brinker GS. Effect of osmotic blood-brain barrier disruption on gentamicin penetration into the cerebrospinal fluid and brains of normal rabbits. Antimicrob Agents Chemother 1983; 24: 147-50
  • 84 Xia H, Gao X, Gu G, Liu Z, Zeng N, Hu Q. et al. Low molecular weight protamine-functionalized nanoparticles for drug delivery to the brain after intranasal administration. Biomaterials 2011; 32: 9888-98
  • 85 Xu F, Lu W, Wu H, Fan L, Gao X, Jiang X. Brain delivery and systemic effect of cationic albumin conjugated PLGA nanoparticles. J Drug Target 2009; 17: 423-34
  • 86 Lu W. Adsorptive-mediated brain delivery systems. Curr Pharm Biotechnol 2012; 13: 2340-8
  • 87 Lu W, Sun Q, Wan J, She Z, Jiang XG. Cationic albumin-conjugated pegylated nanoparticles allow gene delivery into brain tumors via intravenous administration. Cancer Res 2006; 66: 11878-87
  • 88 Lu W, Wan J, She Z, Jiang X. Brain delivery property and accelerated blood clearance of cationic albumin conjugated pegylated nanoparticle. J Control Release 2007; 118: 38-53
  • 89 Lu W, Zhang Y, Tan YZ, Hu KL, Jiang XG, Fu SK. Cationic albumin-conjugated pegylated nanoparticles as novel drug carrier for brain delivery. J Control Release 2005; 107: 428-48
  • 90 Sharma G, Modgil A, Zhong T, Sun C, Singh J. Influence of short-chain cell-penetrating peptides on transport of doxorubicin encapsulating receptor-targeted liposomes across brain endothelial barrier. Pharm Res. 2013
  • 91 Qin Y, Chen H, Zhang Q, Wang X, Yuan W, Kuai R. et al. Liposome formulated with TAT-modified cholesterol for improving brain delivery and therapeutic efficacy on brain glioma in animals. Int J Pharm 2011; 420: 304-12
  • 92 Qin Y, Zhang Q, Chen H, Yuan W, Kuai R, Xie F. et al. Comparison of four different peptides to enhance accumulation of liposomes into the brain. J Drug Target 2012; 20: 235-45
  • 93 Gupta B, Levchenko TS, Torchilin VP. TAT peptide-modified liposomes provide enhanced gene delivery to intracranial human brain tumor xenografts in nude mice. Oncol Res 2007; 16: 351-9
  • 94 Joshi WM, Singh-Moon R. Feasibility of intra-arterial drug delivery to brain tissue using cell penetrating peptides. J Neurosurg Anesthesiol 2013; 25: 465
  • 95 Joshi S, Aagaard B, Pile-Spellman J, Libow A, Popilskis SJ. In Non-human primates intracarotid adenosine-not nitroprusside-profoundly increases cerebral blood flow. Anesthesiol 2000; 93: 362
  • 96 Mourant JR, Johnson TM, Los G, Bigio IJ. Non-invasive measurement of chemotherapy drug concentrations in tissue: Preliminary demonstrations of in vivo measurements. Phys Med Biol 1999; 44: 1397-417
  • 97 Bigio IJ, Mourant JR, Los G. Noninvasive, in-situ measurement of drug concentrations in tissue using optical spectroscopy. J Gravit Physiol 1999; 6: P173-5
  • 98 Bigio IJ, Bown SG. Spectroscopic sensing of cancer and cancer therapy: Current status of translational research. Cancer Biol Ther 2004; 3: 259-67
  • 99 Reif R, Wang M, Joshi S, A'Amar O, Bigio IJ. Optical method for real-time monitoring of drug concentrations facilitates the development of novel methods for drug delivery to brain tissue. J Biomed Opt 2007; 12: 034036
  • 100 Weber JR, Cuccia DJ, Johnson WR, Bearman GH, Durkin AJ, Hsu M. et al. Multispectral imaging of tissue absorption and scattering using spatial frequency domain imaging and a computed-tomography imaging spectrometer. J Biomed Opt 2011; 16: 011015
  • 101 Cuccia DJ, Bevilacqua F, Durkin AJ, Ayers FR, Tromberg BJ. Quantitation and mapping of tissue optical properties using modulated imaging. J Biomed Opt 2009; 14: 024012
  • 102 Cuccia DJ, Bevilacqua F, Durkin AJ, Tromberg BJ. Modulated imaging: Quantitative analysis and tomography of turbid media in the spatial-frequency domain. Opt Lett 2005; 30: 1354-6
  • 103 Ergin A, Wang M, Zhang J, Bigio I, Joshi S. Noninvasive in vivo optical assessment of blood brain barrier permeability and brain tissue drug deposition in rabbits. J Biomed Opt 2012; 17: 057008
  • 104 Singh-Moon RW, Chaudhuri D, Straubinger N, Straubinger R, Bigio IJ, Joshi S. Optical pharmacokinetic tomography: Linear, planar, and spatial mapping of tracer tagged intra-arterial nanoparticle delivery. J Neurosurg Anesthesiol 2013; 25: 465-6
  • 105 Pardridge WM. Brain drug targeting, the future of drug development. Cambridge, UK: Cambridge University Press; 2010
  • 106 Joshi S, Young WL, Pile-Spellman J, Duong DH, Vang MC, Hacein-Bey L. et al. The feasibility of intracarotid adenosine for the manipulation of human cerebrovascular resistance. Anesth Analg 1998; 87: 1291-8
  • 107 Joshi S, Agarwal S. The proposed role of optical sensing in translational stroke research. Ann N Y Acad Sci 1199: 149-57