Skip to main content

Advertisement

Log in

Functional aspects of the CD30 gene in Hodgkin’s lymphoma and anaplastic large cell lymphoma

  • Review
  • Published:
Oncology Reviews

Abstract

Lymphomas are neoplasms of the human immune system and can be divided into two categories, Hodgkin’s lymphoma (HL) and non-Hodgkin’s lymphoma (NHL). Anaplastic large cell lymphoma (ALCL) is a form of NHL that shares a common distinctive feature with Hodgkin’s lymphoma, the overexpression of cytokine receptor, CD30. However, the responses in HL and ALCL differ. Activation of CD30 via its ligand, CD153 or antibodies triggers various cellular responses ranging from apoptosis to cell proliferation in ALCL but no response in HL. To further understand the role of these processes in the pathology, downstream signalling events arising from CD30 stimulation have been investigated; however, little is known about regulatory mechanisms that result in the characteristically high levels of CD30 in HL and ALCL. Here we review the studies that have focused on characterisation of the CD30 promoter as well as several factors that contribute to the transcriptional regulation of CD30 in these lymphomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aggarwal BB (2003) Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 3:745–756

    PubMed  CAS  Google Scholar 

  2. Hehlgans T, Pfeffer K (2005) The intriguing biology of the tumour necrosis factor/tumour necrosis factor receptor superfamily: players, rules and the games. Immunology 115:1–20

    PubMed  CAS  Google Scholar 

  3. Bargou RC, Emmerich F, Krappmann D, Bommert K, Mapara MY, Arnold W, Royer HD et al (1997) Constitutive nuclear factor-kappaB-RelA activation is required for proliferation and survival of Hodgkin’s disease tumor cells. J Clin Investig 100:2961–2969

    PubMed  CAS  Google Scholar 

  4. Mori M, Manuelli C, Pimpinelli N, Mavilia C, Maggi E, Santucci M, Bianchi B et al (1999) CD30-CD30 ligand interaction in primary cutaneous CD30 + T-cell lymphomas: a clue to the pathophysiology of clinical regression. Blood 94:3077–3083

    PubMed  CAS  Google Scholar 

  5. Pfeifer W, Levi E, Petrogiannis-Haliotis T, Lehmann L, Wang Z, Kadin ME (1999) A murine xenograft model for human CD30 + anaplastic large cell lymphoma. Successful growth inhibition with an anti-CD30 antibody (HeFi-1). Am J Pathol 155:1353–1359

    PubMed  CAS  Google Scholar 

  6. Stein H, Gerdes J, Schwab U, Lemke H, Mason DY, Ziegler A, Schienle W et al (1982) Identification of Hodgkin and Sternberg-reed cells as a unique cell type derived from a newly-detected small-cell population. Int J Cancer 30:445–459

    PubMed  CAS  Google Scholar 

  7. Stein H, Foss H-D, Durkop H, Marafioti T, Delsol G, Pulford K, Pileri S et al (2000) CD30+ anaplastic large cell lymphoma: a review of its histopathologic, genetic, and clinical features. Blood 96:3681–3695

    PubMed  CAS  Google Scholar 

  8. Falini B, Pileri S, Pizzolo G, Durkop H, Flenghi L, Stirpe F, Martelli MF et al (1995) CD30 (Ki-1) molecule: a new cytokine receptor of the tumor necrosis factor receptor superfamily as a tool for diagnosis and immunotherapy. Blood 85:1–14

    PubMed  CAS  Google Scholar 

  9. Gerdes J, Schwarting R, Stein H (1986) High proliferative activity of Reed Sternberg associated antigen Ki-1 positive cells in normal lymphoid tissue. J Clin Pathol 39:993–997

    PubMed  CAS  Google Scholar 

  10. Schwab U, Stein H, Gerdes J, Lemke H, Kirchner H, Schaadt M, Diehl V (1982) Production of a monoclonal antibody specific for Hodgkin and Sternberg-Reed cells of Hodgkin’s disease and a subset of normal lymphoid cells. Nature 299:65–67

    PubMed  CAS  Google Scholar 

  11. Franchina M, Woo AJ, Dods J, Karimi M, Ho D, Watanabe T, Spagnolo DV et al (2008) The CD30 gene promoter microsatellite binds transcription factor Yin Yang 1 (YY1) and shows genetic instability in anaplastic large cell lymphoma. J Pathol 214:65–74

    PubMed  CAS  Google Scholar 

  12. Nagata S, Ise T, Onda M, Nakamura K, Ho M, Raubitschek A, Pastan IH (2005) Cell membrane-specific epitopes on CD30: potentially superior targets for immunotherapy. Proc Natl Acad Sci USA 102:7946–7951

    PubMed  CAS  Google Scholar 

  13. Zhang M, Yao Z, Zhang Z, Garmestani K, Goldman CK, Ravetch JV, Janik J et al (2006) Effective therapy for a murine model of human anaplastic large-cell lymphoma with the anti-CD30 monoclonal antibody, HeFi-1, does not require activating Fc receptors. Blood 108:705–710

    PubMed  CAS  Google Scholar 

  14. Rudolph P, Lappe T, Schmidt D (1993) Expression of CD30 and nerve growth factor-receptor in neoplastic and reactive vascular lesions: an immunohistochemical study. Histopathology 23:173–178

    PubMed  CAS  Google Scholar 

  15. Cambiaggi A, Cantoni C, Marciano S, De Totero D, Pileri S, Tazzari PL, Stein H et al (1993) Cultured human NK cells express the Ki-1/CD30 antigen. Br J Haematol 85:270–276

    PubMed  CAS  Google Scholar 

  16. Ito K, Watanabe T, Horie R, Shiota M, Kawamura S, Mori S (1994) High expression of the CD30 molecule in human decidual cells. Am J Pathol 145:276–280

    PubMed  CAS  Google Scholar 

  17. Pallesen G (1990) The diagnostic significance of the CD30 (Ki-1) antigen. Histopathology 16:409–413

    PubMed  CAS  Google Scholar 

  18. Stein H, Mason D, Gerdes J, O’Connor N, Wainscoat J, Pallesen G, Gatter K et al (1985) The expression of the Hodgkin’s disease associated antigen Ki-1 in reactive and neoplastic lymphoid tissue: evidence that Reed-Sternberg cells and histiocytic malignancies are derived from activated lymphoid cells. Blood 66:848–858

    PubMed  CAS  Google Scholar 

  19. Matsumoto K, Terakawa M, Miura K, Fukuda S, Nakajima T, Saito H (2004) Extremely rapid and intense induction of apoptosis in human eosinophils by anti-CD30 antibody treatment in vitro. J Immunol 172:2186–2193

    PubMed  CAS  Google Scholar 

  20. Alzona M, Jack HM, Fisher RI, Ellis TM (1994) CD30 defines a subset of activated human T cells that produce IFN-gamma and IL-5 and exhibit enhanced B cell helper activity. J Immunol 153:2861–2867

    PubMed  CAS  Google Scholar 

  21. Andreesen R, Osterholz J, Lohr GW, Bross KJ (1984) A Hodgkin cell-specific antigen is expressed on a subset of auto- and alloactivated T (helper) lymphoblasts. Blood 63:1299–1302

    PubMed  CAS  Google Scholar 

  22. Ellis TM, Simms PE, Slivnick DJ, Jack HM, Fisher RI (1993) CD30 is a signal-transducing molecule that defines a subset of human activated CD45RO+ T cells. J Immunol 151:2380–2389

    PubMed  CAS  Google Scholar 

  23. Bengtsson A, Johansson C, Linder MT, Hallden G, van der Ploeg I, Scheynius A (1995) Not only Th2 cells but also Th1 and Th0 cells express CD30 after activation. J Leukoc Biol 58:683–689

    PubMed  CAS  Google Scholar 

  24. Gilfillan MC, Noel PJ, Podack ER, Reiner SL, Thompson CB (1998) Expression of the costimulatory receptor CD30 is regulated by both CD28 and cytokines. J Immunol 160:2180–2187

    PubMed  CAS  Google Scholar 

  25. Eckert F, Schmid U, Kaudewitz P, Burg G, Braun-Falco O (1989) Follicular lymphoid hyperplasia of the skin with high content of Ki-1 positive lymphocytes. Am J Dermatopathol 11:345–352

    PubMed  CAS  Google Scholar 

  26. Higgins JP, Warnke RA (1999) CD30 expression is common in mediastinal large B-cell lymphoma. Am J Clin Pathol 112:241–247

    PubMed  CAS  Google Scholar 

  27. Jones TJ, Coad NA, Muir KR, Parkes SE, Evans CD, Mann JR (1995) Immunophenotypic analysis of childhood Burkitt’s lymphoma in the West Midlands 1957–1986. J Clin Pathol 48:22–25

    PubMed  CAS  Google Scholar 

  28. Pallesen G, Hamilton-Dutoit SJ (1988) Ki-1 (CD30) antigen is regularly expressed by tumor cells of embryonal carcinoma. Am J Pathol 133:446–450

    PubMed  CAS  Google Scholar 

  29. Maeda K, Takahashi M (1989) Characterization of skin infiltrating cells in adult T-cell leukaemia/lymphoma (ATLL): clinical, histological and immunohistochemical studies on eight cases. Br J Dermatol 121:603–612

    PubMed  CAS  Google Scholar 

  30. Piris M, Brown DC, Gatter KC, Mason DY (1990) CD30 expression in non-Hodgkin’s lymphoma. Histopathology 17:211–218

    PubMed  CAS  Google Scholar 

  31. Abbondanzo SL, Sato N, Straus SE, Jaffe ES (1990) Acute infectious mononucleosis. CD30 (Ki-1) antigen expression and histologic correlations. Am J Clin Pathol 93:698–702

    PubMed  CAS  Google Scholar 

  32. Hansen HP, Kisseleva T, Kobarg J, Horn-Lohrens O, Havsteen B, Lemke H (1995) A zinc metalloproteinase is responsible for the release of CD30 on human tumor cell lines. Int J Cancer 63:750–756

    PubMed  CAS  Google Scholar 

  33. Josimovic-Alasevic O, Durkop H, Schwarting R, Backe E, Stein H, Diamantstein T (1989) Ki-1 (CD30) antigen is released by Ki-1-positive tumor cells in vitro and in vivo I. Partial characterization of soluble Ki-1 antigen and detection of the antigen in cell culture supernatants and in serum by an enzyme-linked immunosorbent assay. Eur J Immunol 19:157–162

    PubMed  CAS  Google Scholar 

  34. Gause A, Pohl C, Tschiersch A, Da Costa L, Jung W, Diehl V, Hasenclever D et al (1991) Clinical significance of soluble CD30 antigen in the sera of patients with untreated Hodgkin’s disease. Blood 77:1983–1988

    PubMed  CAS  Google Scholar 

  35. Nadali G, Tavecchia L, Zanolin E, Bonfante V, Viviani S, Camerini E, Musto P et al (1998) Serum level of the soluble form of the CD30 molecule identifies patients with Hodgkin’s disease at high risk of unfavorable outcome. Blood 91:3011–3016

    PubMed  CAS  Google Scholar 

  36. Pizzolo G, Vinante F, Morosato L, Nadali G, Chilosi M, Gandini G, Sinicco A et al (1994) High serum level of the soluble form of CD30 molecule in the early phase of HIV-1 infection as an independent predictor of progression to AIDS. Aids 8:741–745

    PubMed  CAS  Google Scholar 

  37. Younes A, Kadin ME (2003) Emerging applications of the tumor necrosis factor family of ligands and receptors in cancer therapy. J Clin Oncol 21:3526–3534

    PubMed  CAS  Google Scholar 

  38. Bengtsson A, Holm L, Back O, Fransson J, Scheynius A (1997) Elevated serum levels of soluble CD30 in patients with atopic dermatitis (AD). Clin Exp Immunol 109:533–537

    PubMed  CAS  Google Scholar 

  39. Gerli R, Muscat C, Bistoni O, Falini B, Tomassini C, Agea E, Tognellini R et al (1995) High levels of the soluble form of CD30 molecule in rheumatoid arthritis (RA) are expression of CD30+ T cell involvement in the inflamed joints. Clin Exp Immunol 102:547–550

    Article  PubMed  CAS  Google Scholar 

  40. Giacomelli R, Cipriani P, Lattanzio R, Di Franco M, Locanto M, Parzanese I, Passacantando A et al (1997) Circulating levels of soluble CD30 are increased in patients with systemic sclerosis (SSc) and correlate with serological and clinical features of the disease. Clin Exp Immunol 108:42–46

    PubMed  CAS  Google Scholar 

  41. Okumura M, Hidaka Y, Kuroda S, Takeoka K, Tada H, Amino N (1997) Increased serum concentration of soluble CD30 in patients with Graves’ disease and Hashimoto’s thyroiditis. J Clin Endocrinol Metab 82:1757–1760

    PubMed  CAS  Google Scholar 

  42. Wang G, Hansen H, Tatsis E, Csernok E, Lemke H, Gross WL (1997) High plasma levels of the soluble form of CD30 activation molecule reflect disease activity in patients with Wegener’s granulomatosis. Am J Med 102:517–523

    PubMed  CAS  Google Scholar 

  43. Zinzani PL, Pileri S, Bendandi M, Buzzi M, Sabattini E, Ascani S, Gherlinzoni F et al (1998) Clinical implications of serum levels of soluble CD30 in 70 adult anaplastic large-cell lymphoma patients. J Clin Oncol 16:1532–1537

    PubMed  CAS  Google Scholar 

  44. Smith CA, Gruss HJ, Davis T, Anderson D, Farrah T, Baker E, Sutherland GR et al (1993) CD30 antigen, a marker for Hodgkin’s lymphoma, is a receptor whose ligand defines an emerging family of cytokines with homology to TNF. Cell 73:1349–1360

    PubMed  CAS  Google Scholar 

  45. Gattei V, Degan M, Gloghini A, De Iuliis A, Improta S, Rossi FM, Aldinucci D et al (1997) CD30 ligand is frequently expressed in human hematopoietic malignancies of myeloid and lymphoid origin. Blood 89:2048–2059

    PubMed  CAS  Google Scholar 

  46. Romagnani P, Annunziato F, Manetti R, Mavilia C, Lasagni L, Manuelli C, Vannelli GB et al (1998) High CD30 ligand expression by epithelial cells and Hassal’s corpuscles in the medulla of human thymus. Blood 91:3323–3332

    PubMed  CAS  Google Scholar 

  47. Gruss H-J, Pinto A, Duyster J, Poppema S, Herrmann F (1997) Hodgkin’s disease: a tumor with disturbed immunological pathways. Immunol Today 18:156–163

    PubMed  CAS  Google Scholar 

  48. Gruss HJ, Boiani N, Williams DE, Armitage RJ, Smith CA, Goodwin RG (1994) Pleiotropic effects of the CD30 ligand on CD30-expressing cells and lymphoma cell lines. Blood 83:2045–2056

    PubMed  CAS  Google Scholar 

  49. Bazzoni F, Beutler B (1996) The tumor necrosis factor ligand and receptor families. N Engl J Med 334:1717–1725

    PubMed  CAS  Google Scholar 

  50. Horie R, Watanabe T (1998) CD30: expression and function in health and disease. Semin Immunol 10:457–470

    PubMed  CAS  Google Scholar 

  51. Baker SJ, Reddy EP (1996) Transducers of life and death: TNF receptor superfamily and associated proteins. Oncogene 12:1–9

    PubMed  CAS  Google Scholar 

  52. Malinin NL, Boldin MP, Kovalenko AV, Wallach D (1997) MAP3 K-related kinase involved in NF-kappaB induction by TNF, CD95 and IL-1. Nature 385:540–544

    PubMed  CAS  Google Scholar 

  53. Biswas P, Smith CA, Goletti D, Hardy EC, Jackson RW, Fauci AS (1995) Cross-linking of CD30 induces HIV expression in chronically infected T cells. Immunity 2:587–596

    PubMed  CAS  Google Scholar 

  54. McDonald PP, Cassatella MA, Bald A, Maggi E, Romagnani S, Gruss HJ, Pizzolo G (1995) CD30 ligation induces nuclear factor-kappa B activation in human T cell lines. Eur J Immunol 25:2870–2876

    PubMed  CAS  Google Scholar 

  55. Gruss HJ, Ulrich D, Dower SK, Herrmann F, Brach MA (1996) Activation of Hodgkin cells via the CD30 receptor induces autocrine secretion of interleukin-6 engaging the NF-kappabeta transcription factor. Blood 87:2443–2449

    PubMed  CAS  Google Scholar 

  56. Aizawa S, Nakano H, Ishida T, Horie R, Nagai M, Ito K, Yagita H et al (1997) Tumor necrosis factor receptor-associated factor (TRAF) 5and TRAF2 are involved in CD30-mediated NFkappa B activation. J Biol Chem 272:2042–2045

    PubMed  CAS  Google Scholar 

  57. Boucher L-M, Marengère LEM, Lu Y, Thukral S, Mak TW (1997) Binding sites of cytoplasmic effectors TRAF1, 2, and 3 on CD30 and other members of the TNF receptor superfamily. Biochem Biophys Res Commun 233:592–600

    PubMed  CAS  Google Scholar 

  58. Duckett CS, Gedrich RW, Gilfillan MC, Thompson CB (1997) Induction of nuclear factor kappaB by the CD30 receptor is mediated by TRAF1 and TRAF2. Mol Cell Biol 17:1535–1542

    PubMed  CAS  Google Scholar 

  59. Gedrich RW, Gilfillan MC, Duckett CS, Van Dongen JL, Thompson CB (1996) CD30 contains two binding sites with different specificities for members of the tumor necrosis factor receptor-associated factor family of signal transducing proteins. J Biol Chem 271:12852–12858

    PubMed  CAS  Google Scholar 

  60. Lee SY, Kandala G, Liou ML, Liou HC, Choi Y (1996) CD30/TNF receptor-associated factor interaction: NF-kappa B activation and binding specificity. Proc Natl Acad Sci USA 93:9699–9703

    PubMed  CAS  Google Scholar 

  61. Horie R, Aizawa S, Nagai M, Ito K, Higashihara M, Ishida T, Inoue J et al (1998) A novel domain in the CD30 cytoplasmic tail mediates NFkappaB activation. Int Immunol 10:203–210

    PubMed  CAS  Google Scholar 

  62. Horie R, Watanabe T, Ito K, Morisita Y, Watanabe M, Ishida T, Higashihara M et al (2002) Cytoplasmic aggregation of TRAF2 and TRAF5 proteins in the Hodgkin-Reed-Sternberg cells. Am J Pathol 160:1647–1654

    PubMed  CAS  Google Scholar 

  63. Cabannes E, Khan G, Aillet F, Jarrett RF, Hay RT (1999) Mutations in the IkBa gene in Hodgkin’s disease suggest a tumour suppressor role for IkappaBalpha. Oncogene 18:3063–3070

    PubMed  CAS  Google Scholar 

  64. Emmerich F, Meiser M, Hummel M, Demel G, Foss HD, Jundt F, Mathas S et al (1999) Overexpression of I kappa B alpha without inhibition of NF-kappaB activity and mutations in the I kappa B alpha gene in Reed-Sternberg cells. Blood 94:3129–3134

    PubMed  CAS  Google Scholar 

  65. Krappmann D, Emmerich F, Kordes U, Scharschmidt E, Dorken B, Scheidereit C (1999) Molecular mechanisms of constitutive NF-kappaB/Rel activation in Hodgkin/Reed-Sternberg cells. Oncogene 18:943–953

    PubMed  CAS  Google Scholar 

  66. Emmerich F, Theurich S, Hummel M, Haeffker A, Vry MS, Dohner K, Bommert K et al (2003) Inactivating I kappa B epsilon mutations in Hodgkin/Reed-Sternberg cells. J Pathol 201:413–420

    PubMed  CAS  Google Scholar 

  67. Horie R, Watanabe T, Morishita Y, Ito K, Ishida T, Kanegae Y, Saito I et al (2002) Ligand-independent signaling by overexpressed CD30 drives NF-kappaB activation in Hodgkin-Reed-Sternberg cells. Oncogene 21:2493–2503

    PubMed  CAS  Google Scholar 

  68. Bargou RC, Leng C, Krappmann D, Emmerich F, Mapara MY, Bommert K, Royer HD et al (1996) High-level nuclear NF-kappa B and Oct-2 is a common feature of cultured Hodgkin/Reed-Sternberg cells. Blood 87:4340–4347

    PubMed  CAS  Google Scholar 

  69. Horie R, Watanabe M, Ishida T, Koiwa T, Aizawa S, Itoh K, Higashihara M et al (2004) The NPM-ALK oncoprotein abrogates CD30 signaling and constitutive NF-kappaB activation in anaplastic large cell lymphoma. Cancer Cell 5:353–364

    PubMed  CAS  Google Scholar 

  70. Bischof D, Pulford K, Mason DY, Morris SW (1997) Role of the nucleophosmin (NPM) portion of the non-Hodgkin’s lymphoma-associated NPM-anaplastic lymphoma kinase fusion protein in oncogenesis. Mol Cell Biol 17:2312–2325

    PubMed  CAS  Google Scholar 

  71. Morris SW, Naeve C, Mathew P, James PL, Kirstein MN, Cui X, Witte DP (1997) ALK, the chromosome 2 gene locus altered by the t(2;5) in non-Hodgkin’s lymphoma, encodes a novel neural receptor tyrosine kinase that is highly related to leukocyte tyrosine kinase (LTK). Oncogene 14:2175–2188 (erratum appears in Oncogene 1997 Dec 4;15(23):2883)

    PubMed  CAS  Google Scholar 

  72. Morris SW, Kirstein MN, Valentine MB, Dittmer KG, Shapiro DN, Saltman DL, Look AT (1994) Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science 263:1281–1284

    PubMed  CAS  Google Scholar 

  73. Bai RY, Dieter P, Peschel C, Morris SW, Duyster J (1998) Nucleophosmin-anaplastic lymphoma kinase of large-cell anaplastic lymphoma is a constitutively active tyrosine kinase that utilizes phospholipase C-gamma to mediate its mitogenicity. Mol Cell Biol 18:6951–6961

    PubMed  CAS  Google Scholar 

  74. Jaffe ES (2001) Anaplastic large cell lymphoma: the shifting sands of diagnostic hematopathology. Mod Pathol 14:219–228

    PubMed  CAS  Google Scholar 

  75. Pocsik E, Mihalik R, Ali-Osman F, Aggarwal BB (1994) Cell density-dependent regulation of cell surface expression of two types of human tumor necrosis factor receptors and its effect on cellular response. J Cell Biochem 54:453–464

    PubMed  CAS  Google Scholar 

  76. Freiberg RA, Spencer DM, Choate KA, Duh HJ, Schreiber SL, Crabtree GR, Khavari PA (1997) Fas signal transduction triggers either proliferation or apoptosis in human fibroblasts. J Invest Dermatol 108:215–219

    PubMed  CAS  Google Scholar 

  77. Willers J, Dummer R, Kempf W, Kundig T, Burg G, Kadin ME (2003) Proliferation of CD30+ T-helper 2 lymphoma cells can be inhibited by CD30 receptor cross-linking with recombinant CD30 ligand. Clin Cancer Res 9:2744–2754

    PubMed  CAS  Google Scholar 

  78. Franchina M, Karimi M, Ho D, Abraham LJ (2006) Effects of CD30 receptor density on intracellular signalling: insights into anaplatic large cell lymphoma treatment. In: Schwarzmeier JD (ed) 6th International Cytokine Conference, Medimond, Bologna, pp 55–59

  79. Hirsch B, Hummel M, Bentink S, Fouladi F, Spang R, Zollinger R, Stein H et al (2008) CD30-induced signaling is absent in Hodgkin’s cells but present in anaplastic large cell lymphoma cells. Am J Pathol 172:510–520

    PubMed  CAS  Google Scholar 

  80. Bonizzi G, Karin M (2004) The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol 25:280–288

    PubMed  CAS  Google Scholar 

  81. Wright CW, Rumble JM, Duckett CS (2007) CD30 activates both the canonical and alternative NF-kappaB pathways in anaplastic large cell lymphoma cells. J Biol Chem 282:10252–10262

    PubMed  CAS  Google Scholar 

  82. Boll B, Hansen H, Heuck F, Reiners K, Borchmann P, Rothe A, Engert A et al (2005) The fully human anti-CD30 antibody 5F11 activates NF-{kappa}B and sensitizes lymphoma cells to bortezomib-induced apoptosis. Blood 106:1839–1842

    PubMed  Google Scholar 

  83. Doronina SO, Toki BE, Torgov MY, Mendelsohn BA, Cerveny CG, Chace DF, DeBlanc RL et al (2003) Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotechnol 21:778–784

    PubMed  CAS  Google Scholar 

  84. Mir SS, Richter BWM, Duckett CS (2001) Strength of CD30 signal determines sensitivity to apoptosis. Blood 98:1631–1632

    CAS  Google Scholar 

  85. Dürkop H, Latza U, Hummel M, Eitelbach F, Seed B, Stein H (1992) Molecular cloning and expression of a new member of the nerve growth factor receptor family that is characteristic for Hodgkin’s disease. Cell 68:421–427

    PubMed  Google Scholar 

  86. Croager EJ, Muir TM, Abraham LJ (1998) Analysis of the human and mouse promoter region of the non-Hodgkin’s lymphoma-associated CD30 gene. J Interferon Cytokine Res 18:915–920

    PubMed  CAS  Google Scholar 

  87. Pugh B, Tjian R (1991) Transcription from a TATA-less promoter requires a multisubunit TFIID complex. Genes Dev 5:1935–1945

    PubMed  CAS  Google Scholar 

  88. Smale S, Schmidt M, Berk A, Baltimore D (1990) Transcriptional activation by SP1 as directed through TATA or initiator: specific requirement for mammalian transcription factor IID. Proc Natl Acad Sci USA 87:4509–4513

    PubMed  CAS  Google Scholar 

  89. Burke T, Kadonaga J (1996) Drosophila TFIID binds to a conserved downstream basal promoter element that is present in many TATA-box-deficient promoters. Genes Dev 10:711–724

    PubMed  CAS  Google Scholar 

  90. Croager EJ, Gout AM, Abraham LJ (2000) Involvement of Sp1 and microsatellite repressor sequences in the transcriptional control of the human CD30 gene. Am J Pathol 156:1723–1731

    PubMed  CAS  Google Scholar 

  91. Durkop H, Oberbarnscheidt M, Latza U, Bulfone-Paus S, Hirsch B, Pohl T, Krause H et al (2000) The restricted expression pattern of the Hodgkin’s lymphoma-associated cytokine receptor CD30 is regulated by a minimal promoter. J Pathol 192:182–193

    PubMed  CAS  Google Scholar 

  92. Kozak M (1991) An analysis of vertebrate mRNA sequences: intimations of translational control. J Cell Biol 115:887–903

    PubMed  CAS  Google Scholar 

  93. Galvin KM, Shi Y (1997) Multiple mechanisms of transcriptional repression by YY1. Mol Cell Biol 17:3723–3732

    PubMed  CAS  Google Scholar 

  94. Shi Y, Lee JS, Galvin KM (1997) Everything you have ever wanted to know about Yin Yang 1. Biochim Biophys Acta 1332:F49–F66

    PubMed  CAS  Google Scholar 

  95. Shrivastava A, Saleque S, Kalpana GV, Artandi S, Goff SP, Calame K (1993) Inhibition of transcriptional regulator Yin-Yang-1 by association with c-Myc. Science 262:1889–1892

    PubMed  CAS  Google Scholar 

  96. Austen M, Luscher B, Luscher-Firzlaff JM (1997) Characterization of the transcriptional regulator YY1. The bipartite transactivation domain is independent of interaction with the TATA box-binding protein, transcription factor IIB, TAFII55, or cAMP-responsive element-binding protein (CPB)-binding protein. J Biol Chem 272:1709–1717

    PubMed  CAS  Google Scholar 

  97. Usheva A, Shenk T (1994) TATA-binding protein-independent initiation: YY1, TFIIB, and RNA polymerase II direct basal transcription on supercoiled template DNA. Cell 76:1115–1121

    PubMed  CAS  Google Scholar 

  98. Watanabe M, Ogawa Y, Ito K, Higashihara M, Kadin ME, Abraham LJ, Watanabe T et al (2003) AP-1 mediated relief of repressive activity of the CD30 promoter microsatellite in Hodgkin and Reed-Sternberg Cells. Am J Pathol 163:633–641

    PubMed  CAS  Google Scholar 

  99. Watanabe M, Sasaki M, Itoh K, Higashihara M, Umezawa K, Kadin ME, Abraham LJ et al (2005) JunB induced by constitutive CD30-extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase signaling activates the CD30 promoter in anaplastic large cell lymphoma and Reed-Sternberg cells of Hodgkin lymphoma. Cancer Res 65:7628–7634

    PubMed  CAS  Google Scholar 

  100. Harlin H, Podack E, Boothby M, Alegre M-L (2002) TCR-independent CD30 signaling selectively induces IL-13 production via a TNF receptor-associated factor/p38 mitogen-activated protein kinase-dependent mechanism. J Immunol 169:2451–2459

    PubMed  CAS  Google Scholar 

  101. Baccichet A, Benachenhou N, Couture F, Leclerc JM, Sinnett D (1997) Microsatellite instability in childhood T cell acute lymphoblastic leukemia. Leukemia 11:797–802

    PubMed  CAS  Google Scholar 

  102. Hatta Y, Yamada Y, Tomonaga M, Miyoshi I, Said JW, Koeffler HP (1998) Microsatellite instability in adult T-cell leukaemia. Br J Haematol 101:341–344

    PubMed  CAS  Google Scholar 

  103. Mark Z, Toren A, Amariglio N, Schiby G, Brok-Simoni F, Rechavi G (1998) Instability of dinucleotide repeats in Hodgkin’s disease. Am J Hematol 57:148–152

    PubMed  CAS  Google Scholar 

  104. Tanosaki S, Inokuchi K, Shimada T, Dan K (1998) Relation between microsatellite instability and N-ras mutation and duration of disease free survival in patients with acute leukemia. Cancer 83:475–481

    PubMed  CAS  Google Scholar 

  105. Hsu FY-Y, Johnston PB, Burke KA, Zhao Y (2006) The expression of CD30 in anaplastic large cell lymphoma is regulated by nucleophosmin-anaplastic lymphoma kinase-mediated JunB level in a cell type-specific manner. Cancer Res 66:9002–9008

    PubMed  CAS  Google Scholar 

  106. Bird AP (1986) CpG-rich islands and the function of DNA methylation. Nature 321:209–213

    PubMed  CAS  Google Scholar 

  107. Larsen F, Gundersen G, Lopez R, Prydz H (1992) CpG islands as gene markers in the human genome. Genomics 13:1095–1107

    PubMed  CAS  Google Scholar 

  108. Watanabe M, Ogawa Y, Itoh K, Koiwa T, Kadin ME, Watanabe T, Okayasu I et al (2007) Hypomethylation of CD30 CpG islands with aberrant JunB expression drives CD30 induction in Hodgkin lymphoma and anaplastic large cell lymphoma. Lab Investig 88:48–57

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the Cancer Council Western Australia and the National Health and Medical Research Council for support.

Conflict of interest statement

The authors declare that they have no conflict of interest to the publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence J. Abraham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ho, D.S., Rea, A.J. & Abraham, L.J. Functional aspects of the CD30 gene in Hodgkin’s lymphoma and anaplastic large cell lymphoma. Oncol Rev 3, 89–101 (2009). https://doi.org/10.1007/s12156-009-0012-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12156-009-0012-9

Keywords

Navigation