Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-23T14:38:26.077Z Has data issue: false hasContentIssue false

DISTRIBUTION PATTERNS, BODY SIZE, AND SUGAR-FEEDING HABITS OF TWO SPECIES OF CHRYSOPS (DIPTERA: TABANIDAE)

Published online by Cambridge University Press:  31 May 2012

A. Ossowski
Affiliation:
Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada, L2S 3A1
F.F. Hunter*
Affiliation:
Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada, L2S 3A1
*
1 Author to whom all correspondence should be addressed (E-mail: hunterf@spartan.ac.brock.ca).

Abstract

Two deer fly species, Chrysops mitis Osten Sacken and Chrysops excitans Walker, were collected by sweep-netting around human bait on five collection dates in Algonquin Provincial Park, Ontario. Distribution patterns of the two species at two sites (abandoned airfield and Davies bog), in two habitats (open and forest edge), and at two times of day (morning and afternoon) are analysed. Chrysops excitans was more frequently collected than C. mitis. Regardless of site, both species are more common in the morning than the afternoon collections and both are more common in the open than the forest-edge habitats. Chrysops excitans was the larger species (based on wing length measurements) and its size was constant regardless of site, habitat, and time of day. In contrast, afternoon-collected C. mitis were larger than morning-collected flies at the Davies bog site. The crop contents of 241 flies were identified using thin-layer chromatography. Using melezitose and stachyose as honeydew-indicator sugars, the relative importance of homopteran honeydew and floral nectar as carbohydrate sources for these flies was determined. We found no significant differences among species, sites, habitats, or times of day. Overall, 52.8% of C. excitans and 51.1% of C. mitis had recently fed on homopteran-derived honeydew sugars, underscoring the importance of this carbohydrate source for the haematophagous Diptera.

Résumé

Deux espèces de mouches à chevreuil, Chrysops mitis Osten et C. excitans Walker, ont été capturées au moyen d’un filet faucheur près d’un appât humain à cinq dates de récolte dans le parc provincial Algonquin en Ontario. La répartition des deux espèces à deux des sites (une piste d’atterrissage abandonnée et la tourbière Davies), dans deux habitats différents (forêt clairsemée et orée de la forêt) et à deux moments différents de la journée (matin et après-midi) a été analysée. Chrysops excitans a été capturée plus souvent que C. mitis. Indépendamment de l’endroit, les deux espèces étaient capturées plus souvent le matin et elles étaient toutes deux plus abondantes dans la forêt clairsemée qu’à l’orée du bois. Chrysops excitans est une espèce de plus grande taille (d’après la longueur de ses ailes) et sa taille ne variait pas en fonction du site, de l’habitat ou du moment de la journée. En revanche, les C. mitis capturés au cours de l’après-midi étaient plus gros que ceux capturés le matin à la tourbière Davies. Le contenu du jabot a été analysé par chromatographie en couche mince chez 241 mouches. À l’aide de mélézitose et de sachyose comme sucres indicateurs de miellat, nous avons déterminé l’importance relative du miellat des homoptères et du nectar floral comme sources d’hydrates de carbone pour les mouches. Nous n’avons pas relevé de différences significatives entre les espèces, les sites, les habitats ou les moments de la journée. Dans l’ensemble, 52,8% des C. excitans et 51,1% des C. mitis avaient consommé des sucres dérivés de miellat d’homoptère, ce qui indique l’importance de cette source d’hydrates de carbone pour ces diptères hématophages.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Auclair, J.L. 1963. Aphid feeding and nutrition. Annual Review of Entomology 8: 439–90CrossRefGoogle Scholar
Baker, H.G., Baker, I. 1983. Floral nectar sugar constituents in relation to pollinator type. pp. 117–41 in Jones, C.E., Little, R.J. (Eds.), Handbook of experimental pollination biology. New York: Van Nostrand ReinholdGoogle Scholar
Burgin, S.G., Hunter, F.F. 1997 a. Nectar versus honeydew as sources of sugar for male and female black flies (Diptera: Simuliidae). Journal of Medical Entomology 34: 606–8CrossRefGoogle ScholarPubMed
Burgin, S.G., Hunter, F.F. 1997 b. Sugar meal sources of female black flies (Diptera: Simuliidae): a four-habitat study. Canadian Journal of Zoology 75: 1066–72CrossRefGoogle Scholar
Burgin, S.G., Hunter, F.F. 1997 c. Evidence of honeydew feeding in black flies (Diptera: Simuliidae). The Canadian Entomologist 129: 859–69CrossRefGoogle Scholar
Byrne, D.N., Miller, W.B. 1990. Carbohydrate and amino acid composition of phloem sap and honeydew produced by Bemisia tabaci. Journal of Insect Physiology 36: 433–9CrossRefGoogle Scholar
Downes, W.L., Dahlem, G.A. 1987. Keys to the evolution of Diptera: role of Homoptera. Environmental Entomology 16: 847–54CrossRefGoogle Scholar
French, D. 1954. The raffinose family of oligosaccharides. pp. 149–84 in Wolfrom, M.L. (Ed.), Advances in carbohydrate chemistry. New York: Academic Press Inc.Google Scholar
Gray, R.A. 1952. Composition of honeydew excreted by pineapple mealybugs. Science (Washington, DC) 115: 129–33CrossRefGoogle ScholarPubMed
Hocking, B. 1953. The intrinsic range and speed of flight of insects. Transactions of the Royal Entomological Society of London 104: 223345Google Scholar
Hudson, C.S. 1946. Melezitose and turanose. Advances in Carbohydrate Chemistry 2: 136Google Scholar
Janzen, T.A., Hunter, F.F. 1998. Honeydew sugars in wild-caught female deer flies (Diptera: Tabanidae). Journal of Medical Entomology 35: 685–9CrossRefGoogle ScholarPubMed
Lall, S.B. 1970. Carbohydrate meals of haematophagous tabanids (Diptera). Journal of Medical Entomology 7: 127–30CrossRefGoogle ScholarPubMed
Leprince, D.J., Lewis, D.J. 1983. Aspects of the biology of female Chrysops univittatus (Diptera: Tabanidae) in southwestern Quebec. The Canadian Entomologist 115: 421–5CrossRefGoogle Scholar
Leprince, D.J., Lewis, D.J., Parent, J. 1983. Biology of male tabanids (Diptera) aggregated on a mountain summit in southwestern Quebec. Journal of Medical Entomology 20: 608–13CrossRefGoogle Scholar
MacVicker, J.A.K., Moore, J.S., Molyneux, D.H., Maroli, M. 1990. Honeydew sugars in wild-caught Italian phlebotomine sandflies (Diptera: Psychodidae) as detected by high performance liquid chromatography. Bulletin of Entomological Research 80: 339–44CrossRefGoogle Scholar
Magnarelli, L.A., Anderson, J.F. 1981. Sugar-feeding by female tabanids (Diptera: Tabanidae) and its relation to gonotrophic activity. Journal of Medical Entomology 18: 429–33CrossRefGoogle Scholar
Magnarelli, L.A., Anderson, J.F., Thorne, J.H. 1979. Diurnal nectar-feeding of salt marsh Tabanidae (Diptera). Environmental Entomology 8: 544–8CrossRefGoogle Scholar
SAS Institute Inc. 1985. SAS/STAT guide for personal computers, version 6 edition. Cary: SAS Institute Inc.Google Scholar
Teskey, H.J. 1990. The insects and arachnids of Canada. Part 16: The horse flies and deer flies of Canada and Alaska. Ottawa: Ministry of Supply and Services CanadaGoogle Scholar
Wallbanks, K.R., Moore, J.S., Bennett, L.R., Soren, R., Molyneux, D.H., Carlin, J.M., Perez, J.E. 1990. Aphid derived sugars in the neotropical sandfly — Lutzomyia peruensis. Tropical Medicine and Parasitology 42: 60–2Google Scholar