Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-29T17:57:05.272Z Has data issue: false hasContentIssue false

INVITATION PAPER (C.P. ALEXANDER FUND): THE POTENTIAL OF BIOLOGICAL CONTROL FOR MANAGEMENT OF GRASSHOPPERS (ORTHOPTERA: ACRIDIDAE) IN CANADA1

Published online by Cambridge University Press:  31 May 2012

Peter G. Mason
Affiliation:
Agriculture Canada Research Station, 107 Science Place, Saskatoon, Saskatchewan, Canada S7N 0X2
Martin A. Erlandson
Affiliation:
Agriculture Canada Research Station, 107 Science Place, Saskatoon, Saskatchewan, Canada S7N 0X2

Abstract

In Canada biological control of grasshoppers has been studied since the 1930s. Previous attempts at "classical" introductions have not been successful. Native parasitoids, especially sarcophagid flies, have a significant impact on grasshopper populations during certain times but the required conditions and regulatory potential are not understood. Sarcophagids, especially Kellymyia kellyi (Aldrich), and the mermithid nematodes Agamermis decaudate Cobb, Steiner, and Christie and Mermis subnigricans Cobb have some potential as inundative agents. Invertebrate predators appear to impact on egg and early-instar nymphal grasshoppers, and vertebrates, especially birds, help to regulate later instars and adults. The role of microbial pathogens in the population dynamics of grasshoppers in western Canada has long been recognized, particularly with regard to entomophthoran fungi. The possibility of utilizing the microsporidan Nosema locustae Canning for suppression of grasshopper populations has been postulated since the 1970s and field evaluations of its potential have been conducted in Saskatchewan and Alberta. More recently, considerable work, both basic and applied, has demonstrated the potential of various fungus isolates pathogenic to grasshoppers as both "classical" and inundative control agents. Entomopoxvirus isolates from grasshoppers also show potential as biological control agents of grasshoppers but this potential has yet to be investigated in field situations. It is clear, however, that no single microbial pathogen will be the panacea of grasshopper control. It is suggested that future biological control research focus on acquiring a better understanding of the requirements and quantitative effects of parasitoids and predators on grasshopper populations. Emphasis should also be placed on developing integrated pest management programs that utilize local natural enemies (nematodes and microorganisms) for inundative control during outbreaks.

Résumé

Au Canada, la lutte biologique contre les criquets a été entreprise au cours des années 1930. Les tentatives antérieures d’introductions «classiques» n’ont pas réussi. Les para-sitoïdes indigènes, particulièrement les diptères sarcophagidés, ont un impact important sur les populations de criquets à certains moments, mais les conditions requises et le potentiel régulateur de ces insectes sont mal connus. Libérés en masses, les sarcophagidés, particulièrement Kellymyia kellyi (Aldrich), et les nématodes mermithidés Agamermis decaudate Cobb, Steiner et Christie et Mermis subnigricans Cobb pourraient s’avérer de bons agents de lutte. Les invertébrés prédateurs qui semblent avoir un impact sur les oeufs et les larves des premiers stades de criquets et les prédateurs vertébrés, surtout les oiseaux, assurent un certain contrôle des larves plus avancés et des adultes. Le rôle des bactéries pathogènes dans la dynamique des populations de criquets dans l’ouest du Canada est connu depuis longtemps, particulièrement par le biais des entomophtorales. La possibilité d’utiliser la microsporidie Nosema locustae Canning dans la lutte contre les populations de criquets est envisagée depuis les années 1970 et des évaluations en nature de cette méthode ont été faites en Saskatchewan et en Alberta. Des travaux de recherche fondamentale et de recherche appliquée plus récents ont démontré le potentiel de divers isolats fongiques à effets pathogènes sur les criquets dans les programmes de lutte «classique» et les programmes de lutte par libération en masses des agents. Des entomopoxvirus prélevés sur des criquets et isolés pourraient aussi servir à la lutte, mais leur potentiel n’a pas encore été évalué en nature. Il est cependant clair qu’aucun microbe pathogène ne peut être considéré comme une panacée. Les recherches sur la lutte biologique contre les criquets devront être axées surtout sur l’acquisition d’une meilleure compréhension des conditions d’attaque et des effets quantitatifs des parasitoïdes et des prédateurs sur les populations. Une attention particulière devrait également être apportée à l’élaboration de programmes de lutte intégrée basés sur l’utilisation d’ennemis naturels locaux (nématodes et microorganismes) dans la lutte par libération de masses d’agents envahisseurs au cours des épidémies.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anerne, C., and Vajime, C.G.. 1990. Parasites, parasitoids and predators of Oedaleus senegalensis (Orthoptera: Acrididae) in Nigeria. Insect Science Applications 11: 2734.Google Scholar
Anonymous. 1951. Monthly Report, Entomology Laboratory, Belleville, Ontario. Entomology Division, Science Service, Department of Agriculture, Ottawa, Canada.Google Scholar
Anonymous. 1993. Insect Control in Field Crops 1993. Canada-Saskatchewan Agricultural Green Plan.Google Scholar
Arnaud, P.H. Jr., 1978. A Host–Parasite Catalog of North American Tachinidae (Diptera). USDA Miscellaneous Publication 1319: 860 pp.Google Scholar
Arnett, R.H. Jr., 1968. The Beetles of the United States. American Entomology Institute, Ann Arbor, MI. 1112 pp.Google Scholar
Baker, G.L. 1982. The seasonal abundance of dipterous and mermithid parasites of the wingless grasshopper, Phaulacridium vittatum (Sjöstedt) in the central tablelands of New South Wales. pp. 169–176 in Lee, K.E. (Ed.), Proceedings of the Third Australian Conference on Grassland Invertebrate Ecology, Adelaide, 30 Nov.–4 Dec. 1981. S.A. Gov't. Printer, Adelaide, Australia. 402 pp.Google Scholar
Baker, G.L. 1986. The ecology of mermithid parasites of grasshoppers and locusts in south-east Australia. pp. 277–280 in Samson, R.A., Vlak, J.M., and Peters, D. (Eds.), Fundamental and Applied Aspects of Invertebrate Pathology. Fourth International Colloquium on Invertebrate Pathology, Wageningen, Netherlands. 711 pp.Google Scholar
Baker, G.L. 1988. Seasonal and spatial variation in the abundance of wingless grasshopper, Phaulacridium vittatum (Sjöstedt) in the central tablelands of New South Wales during the recessionary phase of an outbreak. Proceedings of the Fifth Australian Grassland Invertebrate Ecology Conference, 13–19 August 1988: 246251.Google Scholar
Baker, G.L., and Poinar, G.O. Jr., 1986. Mermis quirindiensis n.sp. (Nematoda: Mermithidae), a parasite of locusts and grasshoppers (Orthoptera: Acrididae) in south-eastern Australia. Review of Nematology 9: 125134.Google Scholar
Balfour-Browne, F.L. 1960. The green muscardine disease of insects, with special reference to an epidemic in a swarm of locusts in Eritrea. Proceedings of the Royal Entomological Society of London (A) 35: 6574.Google Scholar
Bateman, R.P., Carey, M., Moore, D., and Prior, C.. 1993. The enhanced infectivity of Metarhizium flavoviride in oil formulations to desert locusts at low humidities. Annals of Applied Biology 122: 145152.CrossRefGoogle Scholar
Bateman, R.P., Godonou, I., Kpindu, D., Lomer, C.J., and Paraiso, A.. 1992. Development of a novel field bioassay technique for assessing mycoinsecticide ULV formulations. pp. 255–262 in Lomer, C.J., and Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers. CAB International, Wallingford, U.K.394 pp.Google Scholar
Belovsky, G.E., Slade, J.B., and Stockhoff, B.A.. 1990. Susceptibility to predation for different grasshoppers: An experimental study. Ecology 71: 624634.CrossRefGoogle Scholar
Bensimon, A., Zinger, S., Gressi, E., Hauschner, A., Harpaz, I., and Sela, I.. 1987. “Dark Cheeks” a lethal disease of locusts provoked by a lepidopteran baculovirus. Journal of Invertebrate Pathology 50: 254260.CrossRefGoogle Scholar
Bequaert, J.C. 1965. Family Nemestrinidae. pp. 401–407 in Stone, A., Sabrosky, C.W., Wirth, W.W., Foote, R.H., and Coulson, J.R. (Eds.), A Catalog of the Diptera of America North of Mexico. USDA/ARS Agricultural Handbook 276: 1696 pp.Google Scholar
Bidochka, M.J., and Khachatourians, G.G.. 1987. Hemocytic defense responses to the entomopathogenic fungus Beauveria bassiana in the migratory grasshopper Melanoplus sanguinipes. Entomologia Experimentalis et Applicata 45: 151156.CrossRefGoogle Scholar
Bidochka, M.J. 1988. Regulation of extracellular protease in the entomopathogenic fungus Beauveria bassiana. Experimental Mycology 12: 161168.CrossRefGoogle Scholar
Bidochka, M.J. 1990. Identification of Beauveria bassiana extracellular protease as a virulence factor in pathogenicity towards the migratory grasshopper, Melanoplus sanguinipes. Journal of Invertebrate Pathology 56: 362370.CrossRefGoogle Scholar
Bidochka, M.J. 1991. Microbial and protozoan pathogens of grasshoppers and locusts as potential biocontrol agents. Biocontrol Science and Technology 1: 243259.CrossRefGoogle Scholar
Bock, C.E., Bock, J.H., and Grant, M.C.. 1992. Effects of bird predation on grasshopper densities in an Arizona grassland. Ecology 73: 17061717.CrossRefGoogle Scholar
Braun, L., Ewen, A.B., and Gillott, C.. 1988. The life cycle and ultrastructure of Malameba locustae (King & Taylor) in the migratory grasshopper Melanoplus sanguinipes. The Canadian Entomologist 120: 759772.CrossRefGoogle Scholar
Bryant, H.C. 1914. Birds as destroyers of grasshoppers in California. Auk 31: 168177.CrossRefGoogle Scholar
Bucher, G.E. 1959. Bacteria of grasshoppers of western Canada: III, Frequency of occurrence, pathogenicity. Journal of Insect Pathology 1: 391405.Google Scholar
Bucher, G.E. 1971. Melanoplus spp., grasshoppers (Orthoptera: Acrididae). Chapter 12, pp. 27–28 in Biological Control Programmes Against Insects and Weeds in Canada 1959–1968. Commonwealth Institute of Biological Control, Trinidad, Technical Communication 4: 366 pp.Google Scholar
Buckell, E.R., and Spencer, G.J.. 1945. A preliminary list of flesh flies of British Columbia (Diptera: Sarcophagidae). Proceedings of the Entomological Society of British Columbia 42: 6.Google Scholar
Canning, E.U. 1953. A new microsporidan Nosema locustae n.sp. from the fat body of the African migratory locust Locusta migratoria migratoroides (Reiche and Fairmaire), and its infectivity to other hosts. Parasitology 43: 814.CrossRefGoogle Scholar
Capinera, J.L. 1987 a. Population ecology of rangeland grasshoppers. Chapter 11, pp. 162–182 in Capinera, J.L. (Ed.), Integrated Pest Management on Rangeland: A Shortgrass Prairie Perspective. Westview Press, Boulder, CO.426 pp.Google Scholar
Capinera, J.L. 1987 b. Observations on natural and experimental parasitism of insects by Mermis nigrescens Desjardin (Nematoda: Mermithidae). Journal of the Kansas Entomological Society 60: 159162.Google Scholar
Carruthers, R.I., Feng, Z., Ramos, M.E., and Soper, R.S.. 1988. The effect of solar radiation on the survival of Entomophaga grylli (Entomophthorales: Entomophthoraceae) conidia. Journal of Invertebrate Pathology 52: 154162.CrossRefGoogle Scholar
Carruthers, R.I., Feng, Z., Robson, D.S., and Roberts, D.W.. 1985. In vivo temperature-dependent development of Beauveria bassiana (Deutemycotina: Hyphomycetes) mycosis of the European corn borer, Ostrinia nubilalis (Lepidoptera: Pyralidae). Journal of Invertebrate Pathology 46: 305311.CrossRefGoogle Scholar
Carruthers, R.I., Larkin, T.S., Fisrtencel, H., and Feng, Z.. 1992. Influence of thermal ecology on the mycosis of a rangeland grasshopper. Ecology 73: 190204.CrossRefGoogle Scholar
Carruthers, R.I., and Onsager, J.A.. 1993. Perspective on the use of exotic enemies for biological control of pest grasshoppers (Orthoptera: Acrididae). Environmental Entomology 22: 885903.CrossRefGoogle Scholar
Chandra, H., and Ahluwalia, P.J.S.. 1987. Black cricket (Gryllus bimaculatus DeGeer) — a predator of acridids. Plant Protection Bulletin 39 (1–2): 78.Google Scholar
Charnley, A.K. 1992. Mechanisms of fungal pathogenesis in insects with particular reference to locusts. pp. 181–190 in Lomer, C.J., and Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers. CAB International, Wallingford, U.K.394 pp.Google Scholar
Charnley, A.K., and St. Leger, R.J.. 1991. The role of cuticle degrading enzymes in fungal pathogens in insects. pp. 267–287 in Cole, G.T., and Hoch, H.C. (Eds.), The Fungal Spore and Disease Initiation in Plants and Animals. Plenum Press, New York, NY. 555 pp.Google Scholar
Cherrill, A.J., and Begon, M.. 1989. Predation on grasshoppers by spiders in sand dune grasslands. Entomologia Experimentalis et Applicata 50: 225231.CrossRefGoogle Scholar
Clausen, C.P. 1940. Entomophagous Insects. Hafner Publishing Company Inc., New York, NY. 688 pp.Google Scholar
Clausen, C.P. 1978. Orthoptera, Acrididae: Chinese grasshopper (Oxya chinensis (Thumberg)). pp. 9–10 in Clausen, C.P. (Ed.), Introduced Parasites and Predators of Arthropod Pests and Weeds: A World Review. USDA/ARS Agricultural Handbook 480: 545 pp.Google Scholar
Colgan, D.J. 1986. Studies of the mortality of Locusta migratoria (L.) treated with a polyhedrosis virus from the grasshopper Caledia captiva (F.) (Orthoptera: Acrididae). Bulletin of Entomological Research 76: 539544.CrossRefGoogle Scholar
Colgan, D.J. 1987. Host–parasite genome relationships in acridid grasshoppers. I. Variation in the isozymes of the Caledia captiva species complex and in the gut bacterium Enterobacter cloacae. Genome 29: 257263.CrossRefGoogle Scholar
Davidson, R.L. 1987. Correcting past mistakes — Loss of habitat for predators and parasites of pasture pest. pp. 199–205 in Lee, K.E. (Ed.), Proceedings of the Third Australian Conference on Grassland Invertebrate Ecology, Adelaide, 30 Nov. – 4 Dec. 1981. S.A. Gov't. Printer, Adelaide, Australia. 402 pp.Google Scholar
Debach, P., and Rosen, D.. 1991. Biological Control by Natural Enemies, 2nd ed. Cambridge University Press, Cambridge, MA. 440 pp.Google Scholar
Dempster, J.P. 1963. The population dynamics of grasshoppers and locusts. Biology Review 38: 490529.CrossRefGoogle Scholar
Dysart, R.J. 1991. Biological notes on two chloropid flies (Diptera: Chloropidae), predaceous on grasshopper eggs (Orthoptera: Acrididae). Journal of the Kansas Entomological Society 64: 225230.Google Scholar
Dysart, R.J. 1992. Grasshopper egg parasites (Scelio spp.) from Australia as candidates for biocontrol introduction. Metaletea 14: 5.Google Scholar
Erlandson, M.A. 1991. Protease activity associated with occlusion body preparations of an entomopoxvirus from Melanoplus sanguinipes. Journal of Invertebrate Pathology 57: 255263.CrossRefGoogle Scholar
Erlandson, M.A., Ewen, A.B., Mukerji, M.K., and Gillott, C.. 1986. Susceptibility of immature stages of Melanoplus sanguinipes (Fab.) (Orthoptera: Acrididae) to Nosema cuneatum Henry (Microsporida: Nosematidae) and its effect on host fecundity. The Canadian Entomologist 118: 2935.CrossRefGoogle Scholar
Erlandson, M.A., Johnson, D.L., and Olfert, O.O.. 1988. Entomophaga grylli (Fresenius) infections in grasshopper (Orthoptera: Acrididae) populations in Saskatchewan and Alberta, 1988. The Canadian Entomologist 120: 205209.CrossRefGoogle Scholar
Erlandson, M.A., Mukerji, M.K., Ewen, A.B., and Gillott, C.. 1985. Comparative pathogenicity of Nosema acridophagus Henry and Nosema cuneatum Henry (Microsporida: Nosematidae) for Melanoplus sanguinipes (Fab.) (Orthoptera: Acrididae). The Canadian Entomologist 117: 11671175.CrossRefGoogle Scholar
Evans, H.C., and Samson, R.A.. 1982. Entomogenous fungi from the Galapagos Islands. Canadian Journal of Botany 60: 23252333.CrossRefGoogle Scholar
Ewen, A.B., and Mukerji, M.K.. 1980. Evaluation of Nosema locustae (Microsporida) as a control agent of grasshopper populations in Saskatchewan. Journal of Invertebrate Pathology 35: 295303.CrossRefGoogle Scholar
Ewen, A.B., and Mukerji, M.K.. 1984. Melanoplus spp., Camnula pellucida (Scudder), and other grasshoppers (Orthoptera: Acrididae). Chapter 17, pp. 61–62 in Kelleher, J.S., and Hulme, M.A. (Eds.), Biological Control Programmes Against Insects and Weeds in Canada 1969–1980. Commonwealth Agricultural Bureau, London. 410 pp.Google Scholar
Farrow, R.A. 1981. Aerial dispersal of Scelio fulgidus (Hymenoptera: Scelionidae), parasite of eggs of locusts and grasshoppers (Orthoptera: Acrididae). Entomophaga 26: 349355.CrossRefGoogle Scholar
Foster, D.E. 1978. Goniopsita oophaga (Diptera: Chloropidae) a predator of grasshopper eggs. Pan-Pacific Entomologist 54: 206.Google Scholar
Fowler, A.C., Knight, R.L., George, T.L., and McEwen, L.C.. 1991. Effects of avian predation on grasshopper populations in North Dakota grasslands. Ecology 72: 17751781.CrossRefGoogle Scholar
Fowler, J.F., Schnell, S.P., Pomerinki, M.A., Ortega, M.D., and Fang, J.. 1991. Biological Control of Western Rangeland Grasshoppers with Exotic Predators and Parasitoids: Potential Benefits, Costs, and Alternatives. University of Wyoming Agriculture Experiment Station Publication B0958: 56 pp.Google Scholar
Funk, C.J., Ramoska, W.A., and Bechtel, D.B.. 1990. Light and electron microscopic studies of protoplast development during Entomophaga grylli pathotype 2 infections in Melanoplus differentialis. Journal of Invertebrate Pathology 55: 207214.CrossRefGoogle Scholar
Goerzen, D.W., Erlandson, M.A., and Moore, K.C.. 1990. Effect of two insect viruses and two entomopathogenic fungi on larval and pupal development in the alfalfa leafcutting bee, Megachile rotundata (Fab.) (Hymenoptera: Megachilidae). The Canadian Entomologist 120: 10391040.CrossRefGoogle Scholar
Goettel, M.S., and Roberts, D.W.. 1992. Mass production, formulation and field application of entomopathogenic fungi. pp. 230–238 in Lomer, C.J., and Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers. CAB International, Wallingford, U.K.394 pp.Google Scholar
Goodman, B. 1993. Research community swats grasshopper control trial. Science 260: 887.CrossRefGoogle ScholarPubMed
Granados, R.R. 1981. Entomopoxvirus infections in insects. pp. 101–126 in Davidson, E.W. (Ed.), Pathogenesis of Invertebrate Microbial Disease. Alanhead, Totowa, NJ. 562 pp.Google Scholar
Greathead, D.J. 1963. A review of the insect enemies of Acridoidea (Orthoptera). Transactions of the Royal Entomological Society of London 114: 437517.CrossRefGoogle Scholar
Greathead, D.J. 1992. Natural enemies of tropical locusts and grasshoppers: Their impact and potential as biological control agents. pp. 105–121 in Lomer, C.J., and Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers. CAB International, Wallingford, U.K.394 pp.Google Scholar
Grossman, J., and Quarles, W.. 1993. Strip intercropping for biological control. IPM Practitioner 15(4): 111.Google Scholar
Gunnarsson, S.G.S. 1988. Infection of Schistocerca gregaria by the fungus Metarhizium anisopliae: Cellular reactions in the integument studied by scanning electron microscopy. Journal of Invertebrate Pathology 52: 917.CrossRefGoogle Scholar
Harper, A.M., and Huang, H.C.. 1986. Evaluation of the entomophagous fungus Verticillium lecanii (Moniliales: Moniliaceae) as a control agent for insects. Environmental Entomology 15: 281284.CrossRefGoogle Scholar
Hayes, W.P., and DeCoursey, J.D.. 1938. Observations of grasshopper parasites in 1937. Journal of Economic Entomology 37: 519522.CrossRefGoogle Scholar
Henry, J.E. 1967. Nosema acridophagus sp. n. a microsporidian isolated from grasshoppers. Journal of Invertebrate Pathology 9: 331341.CrossRefGoogle Scholar
Henry, J.E. 1969. Early morphogenesis of tumors induced by Nosema acridophagus in Melanoplus sanguinipes. Journal of Invertebrate Pathology 15: 391394.Google Scholar
Henry, J.E. 1971. Nosema cuneatum sp. n. (Microsporida: Nosematidae) in grasshoppers (Orthoptera: Acrididae). Journal of Invertebrate Pathology 17: 164171.CrossRefGoogle Scholar
Henry, J.E. 1972. Epizootiology of infections by Nosema locustae Canning (Microsporida: Nosematidae) in grasshoppers. Acrida 1: 111120.Google Scholar
Henry, J.E. 1981. Natural and applied control of insects by protozoa. Annual Review of Entomology 26: 4973.CrossRefGoogle Scholar
Henry, J.E. 1982 a. Use of baits in microbial control of insects. pp. 45–48 in Invertebrate Pathology and Microbial Control. Proceedings of IIIrd International Colloquium of Invertebrate Pathology, Brighton, U.K.526 pp.Google Scholar
Henry, J.E. 1982 b. Production and commercialization of microbials: Nosema locustae and other protozoans. pp. 103–106 in Invertebrate Pathology and Microbial Control. Proceedings of IIIrd International Colloquium of Invertebrate Pathology, Brighton, U.K.526 pp.Google Scholar
Henry, J.E. 1985. Effect of grasshopper species, cage density, light intensity, and method of inoculation on mass production of Nosema locustae (Microsporida: Nosematidae). Journal of Economic Entomology 78: 12451250.CrossRefGoogle Scholar
Henry, J.E., and Jutila, J.W.. 1966. The isolation of a polyhedrosis virus from a grasshopper. Journal of Invertebrate Pathology 8: 417418.CrossRefGoogle Scholar
Henry, J.E., Nelson, B.P., and Jutila, J.W.. 1969. Pathology and development of the grasshopper inclusion body virus in Melanoplus sanguinipes. Journal of Virology 3: 605610.CrossRefGoogle ScholarPubMed
Henry, J.E., and Oma, E.A.. 1973. Ultrastructure of the replication of the grasshopper crystalline array virus in Schistocerca americana compared with other picornaviruses. Journal of Invertebrate Pathology 21: 273281.CrossRefGoogle ScholarPubMed
Henry, J.E., and Oma, E.A.. 1974. Effects of infections by Nosema locustae Canning, Nosema acridophagus Henry, and Nosema cuneatum Henry (Microsporida: Nosematidae) in Melanoplus bivittatus (Say) (Orthoptera: Acrididae). Acrida 3: 223231.Google Scholar
Henry, J.E., and Oma, E.A.. 1981. Pest control by Nosema locustae, a pathogen of grasshoppers and crickets. pp. 573–586 in Burges, H.D. (Ed.), Microbial Control of Pests and Plant Diseases 1970–1980. Academic Press, New York, NY. 949 pp.Google Scholar
Henry, J.E., Oma, E.A., and Onsager, J.A.. 1978. Relative effectiveness of ULV spray applications of spores of Nosema locustae against grasshoppers. Journal of Economic Entomology 71: 629632.CrossRefGoogle Scholar
Henry, J.E., Oma, E.A., Onsager, J.A., and Oldacre, S.W.. 1979. Infection of the corn earworm, Heliothis zea, with Nosema acridophagus and Nosema cuneatum from grasshoppers: Relative virulence and production of spores. Journal of Invertebrate Pathology 34: 125132.CrossRefGoogle Scholar
Henry, J.E., and Onsager, J.A.. 1982. Large-scale test of control of grasshoppers on rangeland with Nosema locustae. Journal of Economic Entomology 75: 3135.CrossRefGoogle Scholar
Henry, J.E., Streett, D.A., Oma, E.A., and Goodwin, R.H.. 1986. Ultrastructure of an isolate of Rickettsiella from the African grasshopper Zonocerus vaiegatus. Journal of Invertebrate Pathology 47: 203213.CrossRefGoogle Scholar
Henry, J.E., Tiahrt, K., and Oma, E.A.. 1973. Importance of timing, spore concentrations, and levels of spore carrier in applications of Nosema locustae (Microsporida: Nosematidae) for control of grasshoppers. Journal of Invertebrate Pathology 21: 263272.CrossRefGoogle Scholar
Hinks, C.F., and Ewen, A.B.. 1986. Pathological effects of the parasite Malameba locustae in males of the migratory grasshopper Melanoplus sanguinipes and its interaction with the insecticide, cypermetherin. Entomologia Experimentalis et Applicata 42: 3944.CrossRefGoogle Scholar
Hostetter, D.L., Carruthers, R.J., Ramos, M.R., Onsager, J.A., Cunningham, G.L., Humber, R.A., Roberts, D.W., Bidochka, M.J., Parks, C., Breeding, S.L., Brey, C.W., and Shimek, C.J.. 1993. Classical biological control of rangeland grasshoppers with Entomophaga praxibuli n. sp. an Australian isolate of the Entomophaga grylli complex. 1993. pp. 127133in A.N.P.P. Third Annual Conference on Pests in Agriculture, Montpellier, France, December 7–9.Google Scholar
Huggans, J.L., and Blickenstaff, C.C.. 1966. Parasites and predators of grasshoppers in Missouri. Missouri Agriculture Experiment Station Research Bulletin 903: 139.Google Scholar
Hull, F.M. 1973. Bee Flies of the World. The Genera of the Family Bombyliidae. United States of America National Museum Bulletin 286: 687 pp.Google Scholar
Humber, R.A. 1989. Synopsis of a revised classification for the Entomophthorales (Zygomycotina). Mycotaxon 34: 441460.Google Scholar
Humber, R.A., and Ramoska, W.A.. 1986. Variations in entomophthoralean life cycles: Practical implications. pp. 190–193 in Samson, R.A., Vlak, J.M., and Peters, D. (Eds.), Fundamental and Applied Aspects of Invertebrate Pathology. Fourth International Colloquium of Invertebrate Pathology, Wageningen, Netherlands. 711 pp.Google Scholar
Irshad, M., Ahmad, M., Ghani, M.A., and Ali, R.. 1978. Parasites of grasshopper (Orthoptera: Acridoidea) eggs: Distribution and life history of Scelio spp. (Hymenoptera: Scelionidae) in Pakistan. The Canadian Entomologist 110: 449454.CrossRefGoogle Scholar
Irshad, M., Ali, R., and Mohyuddin, A.I.. 1985. Notes on biology and ecology of nymphal and adult parasites of grasshoppers in Pakistan. Pakistan Journal of Zoology 17: 173177.Google Scholar
Jaeger, B., and Langridge, W.H.R.. 1984. Infection of Locusta migratoria with entomopoxviruses from Arphia conspersa and Melanoplus sanguinipes grasshoppers. Journal of Invertebrate Pathology 43: 374382.CrossRefGoogle Scholar
Joern, A. 1986. Experimental study of avian predation in coexisting grasshopper populations (Orthoptera: Acrididae) in a sandhills grassland. Oikos 46: 243249.CrossRefGoogle Scholar
Joern, A., and Rudd, N.T.. 1982. Impact of predation by the robber fly Proctacanthus milbertii (Diptera: Asilidae) on grasshopper (Orthoptera: Acrididae) populations. Oecologia (Berlin) 55: 4246.CrossRefGoogle ScholarPubMed
Johnson, D.L., Goettel, M.S., Bradley, C., van er Paauw, H., and Maiga, B.. 1992. Field trials with the entomo-pathogenic fungus Beauveria bassiana against grasshoppers in Mali, West Africa, July 1990. pp. 296–310 in Lomer, C.J., and Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers. CAB International, Wallingford, U.K.394 pp.Google Scholar
Johnson, D.L., and Henry, J.E.. 1987. Low rates of insecticide and Nosema locustae (Microsporidia: Nosematidae) on baits applied to roadsides for grasshopper (Orthoptera: Acrididae) control. Journal of Economic Entomology 80: 685689.CrossRefGoogle Scholar
Johnson, D.L., and Pavlikova, E.. 1986. Reduction of consumption by grasshoppers (Orthoptera: Acrididae) infected with Nosema locustae Canning (Microsporida: Nosematidae). Journal of Invertebrate Pathology 48: 232238.CrossRefGoogle Scholar
Jutila, J.W., Henry, J.E., Ancker, R.L., and Brown, W.R., 1970. Some properties of a crystalline-array virus (CAV) isolated from the grasshopper Melanoplus bivittatus (Say) (Orthoptera: Acrididae). Journal of Invertebrate Pathology 15: 225231.CrossRefGoogle Scholar
Key, K.H.L. 1990. Host relations and distribution of species of Caeculisoma (Acarina: Erythraeidae) parasitizing grasshoppers in Australia, with supplementary information for the genus Trombella (Trombellidae). Australian Journal of Zoology 38: 1118.CrossRefGoogle Scholar
Key, K.H.L. 1991. Host relations and distribution of species of Charletonia (Acarina: Erythraeidae) parasitizing grasshoppers. Australian Journal of Zoology 39: 3143.CrossRefGoogle Scholar
Krombein, K.V., Hurd, P.D. Jr., and Smith, D.R.. 1979. Catalog of Hymenoptera in America North of Mexico, Vols. 1–3. Smithsonian Institute Press, Washington, DC. 2735 pp.CrossRefGoogle Scholar
Krupovage, J.R., Huddleston, E.W., and Valdez, R.. 1990. Consumption and mortality of the white-footed mouse (Rodentia: Muridae) and Ord's kangaroo rat (Rodentia: Heteromyidae) when fed carbaryl-bran grasshopper (Orthoptera) bait. Journal of Economic Entomology 83: 21642167.CrossRefGoogle ScholarPubMed
Lange, C.E. 1987. Histopathology in the malpighian tubules of Dichroplus elongatus (Orthoptera: Acrididae) infected with Perezia dichroplusae (Microsporida: Nosematidae). Journal of Invertebrate Pathology 50: 146150.CrossRefGoogle Scholar
Lange, C.E., and Streett, D.A.. 1993. Susceptibility of Argentine melanoplines (Orthoptera: Acrididae) to entomopoxviruses (Entomopoxvirinae) from North American and African grasshoppers. The Canadian Entomologist 125: 11271129.CrossRefGoogle Scholar
Langridge, W.H.R. 1984. Detection of DNA base sequence homology between entomopoxviruses isolated from Lepidoptera and Orthoptera. Journal of Invertebrate Pathology 43: 4146.CrossRefGoogle Scholar
Lavigne, R. 1992. Orthoptera as prey of robber flies (Diptera: Asilidae) — new records. Metaletea 14: 56.Google Scholar
Lockwood, J.A. 1992. Neoclassical biological control: A double-edged sword. Society for Invertebrate Pathology Newsletter 24(2): 68.Google Scholar
Lockwood, J.A. 1993. Environmental issues involved in biological control of rangeland grasshoppers (Orthoptera: Acrididae) with exotic agents. Environmental Entomology 22: 503518.CrossRefGoogle Scholar
Lockwood, J.A., and DeBrey, L.D.. 1990. Direct and indirect effects of Nosema locustae (Canning) (Microsporida: Nosematidae) on rangeland grasshoppers (Orthoptera: Acrididae). Journal of Economic Entomology 83: 377383.CrossRefGoogle Scholar
Lovari, S., Renzoni, A., and Fondi, R.. 1976. The predatory habits of the barn owl (Tyto alba Scopoli) in relation to the vegetation cover. Bollettino di Zoologica 43: 173191.CrossRefGoogle Scholar
MacLeod, D.M. 1954. Investigations on the genera Beauveria Vuill. and Tritirachium Limber. Canadian Journal of Botany 32: 818890.CrossRefGoogle Scholar
MacLeod, D.M., Tyrrel, D., and Welton, M.A.. 1980. Isolation and growth of the grasshopper pathogen, Entomophaga grylli. Journal of Invertebrate Pathology 36: 8589.CrossRefGoogle Scholar
Madder, D.J., and Stemeroff, M.. 1988. The Economics of Insect Control on Wheat, Corn, and Canola in Canada, 1980–1985. Insect Losses Committee Report, Part II. Entomological Society of Canada. 22 pp.Google Scholar
Mahmood, T.Z., and Qazi, M.H.. 1989. Density and parasitization of grasshopper egg-pods in Pakistan. Insect Science and its Application 10: 6368.Google Scholar
Marcandier, S., and Khachatourians, G.G.. 1987. Susceptibility of the migratory grasshopper, Melanoplus sanguinipes (Fab.) (Orthoptera: Acrididae), to Beauveria bassiana (Bals.) Vuillemin (Hyphomycete): Influence of relative humidity. The Canadian Entomologist 119: 901907.CrossRefGoogle Scholar
Masner, L. 1991. The Nearctic species of Duta Nixon (Hymenoptera: Scelionidae), egg parasitoids of ground crickets (Orthoptera: Gryllidae). The Canadian Entomologist 123: 777793.CrossRefGoogle Scholar
McAlpine, J.F., Peterson, B.V., Shewell, G.E., Teskey, H.J., Vockeroth, J.R., and Wood, D.M. (Eds.). 1981. Manual of Nearctic Diptera Vol. I. Agriculture Canada Research Branch Monograph 27: 1674.Google Scholar
McAlpine, J.F., Peterson, B.V., Shewell, G.E., Teskey, H.J., Vockeroth, J.R., and Wood, D.M. (Eds.).1987. Manual of Nearctic Diptera Vol. II. Agriculture Canada Research Branch Monograph 28: 6751332.Google Scholar
McCleod, J.H. 1962. A review of the biological control attempts against insects and weeds in Canada. Part I — Biological control of pests of crops, fruit trees, ornamentals, and weeds in Canada up to 1959. Commonwealth Institute of Biological Control, Trinidad, Technical Communication 2: 134.Google Scholar
McDaniel, B., and Bohls, R.A.. 1984. The distribution and host range of Entomophaga grylli (Fresenius), a fungal parasite of grasshoppers in South Dakota. Proceedings of Entomology Society of Washington 86: 864868.Google Scholar
McEwen, L.C. 1982. Review of grasshopper pesticides versus rangeland wildlife and habitat. pp. 362–382 in Peek, J.M., and Dalke, P.D. (Eds.), Proceedings of the Wildlife–Livestock Relationships Symposium. Forest, Wildlife and Range Experiment Station, University of Idaho, Moscow, ID. 614 pp.Google Scholar
McEwen, L.C. 1987. Function of insectivorous birds in a shortgrass IPM system. Chapter 22, pp. 324–333 in Capinera, J.L. (Ed.), Integrated Pest Management on Rangeland. Westview Press, Boulder, CO. 426 pp.Google Scholar
McGuire, M.R., and Streett, D.A.. 1989. Epizootiology of an undescribed microsporidium in populations of Chorthippus curtipennis (Orthoptera: Acrididae). Journal of Invertebrate Pathology 54: 272274.CrossRefGoogle Scholar
Mead, L.J., Khachatourians, G.G., and Jones, G.A.. 1988. Microbial ecology of the gut in laboratory stocks of the migratory grasshopper, Melanoplus sanguinipes (Fab.) (Orthoptera: Acrididae). Applied Environmental Microbiology 54: 11741181.CrossRefGoogle ScholarPubMed
Miranpuri, G.S., Erlandson, M.A., Gillespie, J.P., and Khachatourians, G.G.. 1992. Changes in hemolymph of the migratory grasshopper, Melanoplus sanguinipes, infected with an entomopoxvirus. Journal of Invertebrate Pathology 60: 274282.CrossRefGoogle Scholar
Moore, K.C., and Erlandson, M.A.. 1988. Isolation of Aspergillus parasiticus Speare and Beauveria bassiana (Bals.) Vuillemin from melanopline grasshoppers (Orthoptera: Acrididae) and demonstration of their pathogenicity in Melanoplus sanguinipes (Fab.). The Canadian Entomologist 120: 989991.CrossRefGoogle Scholar
Morris, O.N. 1985. Susceptibility of the migratory grasshopper, Melanoplus sanguinipes (Orthoptera: Acrididae), to a mixture of Nosema locustae (Microsporida: Nosematidae) and chemical insecticides. The Canadian Entomologist 117: 131136.CrossRefGoogle Scholar
Mukerji, M.K. 1987. Parasitism by Scelio alopteni Riley (Hymenoptera: Scelionidae) in eggs of the two dominant melanopline species (Orthoptera: Acrididae) in Saskatchewan. The Canadian Entomologist 119: 147151.CrossRefGoogle Scholar
Mussgnug, G.L., and Henry, J.E.. 1979. Compatability of malathion and Nosema locustae Canning in Melanoplus sanguinipes (F.). Acrida 8: 7779.Google Scholar
Olfert, O.O., and Erlandson, M.A.. 1991. Wheat foliage consumption by grasshoppers (Orthoptera: Acrididae) infected with Melanoplus sanguinipes entomopoxvirus. Environmental Entomology 20: 17201724.CrossRefGoogle Scholar
Oma, E.A., and Henry, J.E.. 1986. Host relationships of entomopoxviruses isolated from grasshoppers. pp. 48–49 in Grasshopper Symposium Proceedings. North Dakota Extension Service. 94 pp.Google Scholar
Oma, E.A., and Hewitt, G.B.. 1984. Effect of Nosema locustae (Microsporida: Nosematidae) on food consumption in the differential grasshopper (Orthoptera: Acrididae). Journal of Economic Entomology 77: 500501.CrossRefGoogle Scholar
Oma, E.A., and Streett, D.A.. 1993. Production of a grasshopper entomopoxvirus (Entomopoxvirinae) in Melanoplus sanguinipes (F.) (Orthoptera: Acrididae). The Canadian Entomologist 125: 11311133.CrossRefGoogle Scholar
O'Neill, K.M., Woods, S.A., Streett, D.A., and O'Neill, R.P.. 1993. Aggressive interactions and feeding success of scavenging rangeland grasshoppers (Orthoptera: Acrididae). Environmental Entomology 22: 751758.CrossRefGoogle Scholar
Onsager, J.A. 1988. Assessing effectiveness of Nosema locustae for grasshopper control. Montana AgResearch 5: 1216.Google Scholar
Onsager, J.A., Henry, J.E., Foster, R.N., and Staten, R.T.. 1980. Acceptance of wheat bran bait by species of rangeland grasshoppers. Journal of Economic Entomology 73: 548551.CrossRefGoogle Scholar
Onsager, J.A., Rees, N.E., Henry, J.E., and Foster, R.N.. 1981. Integration of bait formulations of Nosema locustae and carbaryl for control of rangeland grasshoppers. Journal of Economic Entomology 74: 183187.CrossRefGoogle Scholar
Packham, S.O., Kish, L.P., and Brusven, M.A.. 1993. Relationships between spring-fed swales and adjacent xeric grasslands on the incidence of Entomophaga calopteni (Entomophthorales: Entomophthoraceae) among grasshoppers on Southwest Idaho rangeland. Environmental Entomology 22: 11561160.CrossRefGoogle Scholar
Painter, R.H. 1962. The taxonomy and biology of Systoechus and Anastoechus bombyliid (Diptera) predators in grasshopper egg pods. Journal of the Kansas Entomology Society 35: 255269.Google Scholar
Pasquet, A., and Krafft, B.. 1992. Cooperation and prey capture efficacy in a social spider, Anelosimus eximius (Araneae, Theridiidae). Ethology 90: 121133.CrossRefGoogle Scholar
Paul, L.C., and Putnam, L.G.. 1960. Morphometrics, parasites, and predators of migrant Melanoplus bilituratus (Wlk.) (Orthoptera: Acrididae) in Saskatchewan in 1940. The Canadian Entomologist 92: 488493.CrossRefGoogle Scholar
Pickford, R. 1964. Life history and behaviour of Scelio calopteni Riley (Hymenoptera: Scelionidae), a parasite of grasshopper eggs. The Canadian Entomologist 96: 11671172.CrossRefGoogle Scholar
Pickford, R., and Mukerji, M.K.. 1974. Assessment of loss in yield of wheat caused by the migratory grasshopper, Melanoplus sanguinipes (Orthoptera: Acrididae). The Canadian Entomologist 106: 12191226.CrossRefGoogle Scholar
Pickford, R., and Riegert, P.W.. 1964. The fungus disease caused by Entomophthora grylli Fres., and its effects on grasshopper populations in Saskatchewan in 1963. The Canadian Entomologist 96: 11581166.CrossRefGoogle Scholar
Poinar, G.O. Jr., 1978. Nematodes for Biological Control of Insects. CRC Press, Boca Raton, FL.277 pp.Google Scholar
Prescott, H.W. 1960. Suppression of grasshoppers by nemestrinid parasites (Diptera). Annals of the Entomology Society of America 53: 513521.CrossRefGoogle Scholar
Prior, C., Jollands, P., and le Patourel, G.. 1988. Infectivity of oil and water formulations of Beauveria bassiana (Deuteromycotina: Hyphomycetes) to the cocoa weevil pest Pantorhytes plutus (Coleoptera: Curculionidae). Journal of Invertebrate Pathology 52: 6672.CrossRefGoogle Scholar
Prior, C., Lomer, C.J., Herren, H., Paraiso, A., Kooyman, C., and Smit, J.J.. 1992. The IIBC/IITA/DFPV collaborative research programme on the biological control of locusts and grasshoppers. pp. 8–20 in Lomer, C.J., and Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers. CAB International, Wallingford, U.K.394 pp.Google Scholar
Przybyszewski, J., and Capinera, J.L.. 1991. Patterns of parasitism among shortgrass prairie grasshoppers (Orthoptera: Acrididae) populations. Journal of the Kansas Entomological Society 64: 517.Google Scholar
Punzo, F. 1991. Field and laboratory observations on prey items taken by the wolf spider, Lycosa lenta Hentz (Araneae, Lycosidae). Bulletin of the British Arachnological Society 8: 261264.Google Scholar
Putnam, L.G. 1953. Observations on internal parasites (Hymenoptera: Scelionidae) of eggs of pest grasshopper species in the Prairie Provinces of Canada. The Canadian Entomologist 85: 255260.CrossRefGoogle Scholar
Ramoska, W.A., Hajek, A.E., Ramos, M.E., and Soper, R.S.. 1988. Infection of grasshoppers (Orthoptera: Acrididae) by members of the Entomophaga grylli complex (Zygomycetes: Entomophthorales). Journal of Invertebrate Pathology 52: 309313.CrossRefGoogle Scholar
Rees, N.E. 1973. Arthropod and Nematode Parasites, Parasitoids, and Predators of Acrididae in America North of Mexico. USDA/ARS Technical Bulletin 1460: 287 pp.Google Scholar
Rees, N.E. 1985. Suitability of selected North American grasshopper species as hosts for grasshopper parasites from Pakistan. Agriculture Ecosystems and Environment 12: 157163.CrossRefGoogle Scholar
Rees, N.E. 1986. Effects of dipterous parasites on production and viability of Melanoplus sanguinipes eggs (Orthoptera: Acrididae). The Canadian Entomologist 115: 205206.Google Scholar
Rees, N.E., and Onsager, J.A.. 1982. Influence of predators on the efficiency of the Blaesoxipha spp. parasites of the migratory grasshopper. Environmental Entomology 11: 426428.CrossRefGoogle Scholar
Riegert, P.W. 1968. A History of Grasshopper Abundance Surveys and Forecasts of Outbreaks in Saskatchewan. Memoirs of the Entomological Society of Canada 52: 99 pp.Google Scholar
Sabrosky, C.W. 1991. A new genus and species of Chloropidae (Diptera) predaceous on grasshopper eggs. Journal of the Kansas Entomological Society 64: 221224.Google Scholar
Severin, H.C. 1944. The grasshopper mite: Eutrombidium trigonum (Hermann) an important enemy of grass-hoppers. South Dakota Experiment Station Technical Bulletin 3: 335.Google Scholar
Smith, C.W. 1940. An exchange of grasshopper parasites between Argentina and Canada with notes on parasites of native grasshoppers. Entomological Society of Ontario, Annual Report 70: 5762.Google Scholar
Smith, R.W. 1944. Observations on parasites of some Canadian grasshoppers. The Canadian Entomologist 76: 2933.CrossRefGoogle Scholar
Smith, R.W. 1958. Parasites of nymphal and adult grasshoppers (Orthoptera: Acrididae) in western Canada. Canadian Journal of Zoology 36: 217262.CrossRefGoogle Scholar
Smith, R.W. 1965. A field population of Melanoplus sanguinipes and its parasites. Canadian Journal of Zoology 45: 179201.CrossRefGoogle Scholar
Soper, R.S., May, B., and Martinell, B.. 1983. Entomophaga grylli enzyme polymorphism as a technique for pathotype identification. Environmental Entomology 12: 720723.CrossRefGoogle Scholar
Spencer, G.J. 1931. The oviposition habits of Rhyncocephalus sackeni Will. (Diptera: Nemestrinidae). Proceedings of the Entomological Society of British Columbia 28: 2124.Google Scholar
Spencer, G.J. 1932. Further notes on Rhyncocephalus sackeni Will. Proceedings of the Entomological Society of British Columbia 29: 2527.Google Scholar
Spencer, G.J. 1945. A note on the tangle-winged flies of British Columbia (Diptera: Nemestrinidae). Proceedings of the Entomological Society of British Columbia 42: 18.Google Scholar
Spencer, G.J. 1958. The natural control complex affecting grasshoppers in the dry belt of British Columbia. Proceedings of the Tenth International Congress of Entomology 4: 497509.Google Scholar
St. Leger, R.J., Cooper, R.M., and Charnley, A.K.. 1986. Cuticle degrading enzymes of entomopathogenic fungi: Synthesis on cuticle. Journal of Invertebrate Pathology 48: 8595.CrossRefGoogle Scholar
St. Leger, R.J., Staples, R.C., and Roberts, D.W.. 1993. Entomopathogenic isolates of Metarhizium anisopliae, Beauveria bassiana, and Aspergillus flavus produce multiple extracellular chitinase isozymes. Journal of Invertebrate Pathology 61: 8184.CrossRefGoogle Scholar
Stock, S.P., and Camino, N.B.. 1992. Hexamermis oristriata n. sp. (Nematoda: Mermithidae) a parasite of the grasshopper, Staurorhectus longicornis Giglio-Tos (Orthoptera: Acrididae) in Argentina. Fundamental and Applied Nematology 15: 1518.Google Scholar
Stower, W.J., and Greathead, D.F.. 1969. Numerical changes in a population of the desert locust, with special reference to factors responsible for mortality. Journal of Applied Ecology 6: 203235.CrossRefGoogle Scholar
Streett, D.A. 1987. Future prospects for microbial control of grasshoppers. Chapter 14, pp. 205–218 in Capinera, J.L. (Ed.), Integrated Pest Management on Rangeland. Westview Press, Boulder, CO.426 pp.Google Scholar
Streett, D.A., and Henry, J.E.. 1990. Microbial Control of Locusts and Grasshoppers in the Semi-Arid Tropics. Proceedings of the Vth International Meeting of the Orthopterists' Society, Valsain, Spain. Boletin de Sanidad Vegetal Plagas (Fuera de serie) 20: 2127.Google Scholar
Streett, D.A., and McGuire, M.R.. 1990. Pathogenic diseases of grasshoppers. Chapter 15, pp. 483–516 in Chapman, R.F., and Joern, A. (Eds.), Biology of Grasshoppers. Wiley Interscience, New York, NY. 563 pp.Google Scholar
Streett, D.A., and Woods, S.A.. 1990. Grasshopper pathogen field evaluation: Virus. pp. 210–217 in Cooperative Grasshopper Integrated Pest Management Project 1990 Annual Report. USDA/APHIS. 282 pp.Google Scholar
Teskey, H.J. 1981. Nemestrinidae. Chapter 44, pp. 585–588 in McAlpine, J.F., Peterson, B.V., Shewell, G.E., Teskey, H.J., Vockeroth, J.R., and Wood, D.M. (Eds.), Manual of Nearctic Diptera Vol. I. Agriculture Canada Research Branch Monograph 27: 1674.Google Scholar
Tillotson, D.K., and Margolies, D.C.. 1990. Effects of cadaver age on production of infective stages of Entomophaga grylli pathotype 2 in infected Melanoplus differentialis. Journal of Invertebrate Pathology 55: 202206.CrossRefGoogle Scholar
Vandenberg, J.D., Streett, D.A., and Herbert, E.W. Jr., 1990. Safety of grasshopper entomopoxviruses for caged adult honey bees (Hymenoptera: Apidae). Journal of Economic Entomology 83: 755759.CrossRefGoogle Scholar
Venter, I.G. 1966. Egg development in the brown locust, Locustana pardalina (Walker) with special reference to the effect of infection by Malameba locusta. South African Journal of Agricultural Science 9: 429434.Google Scholar
Watts, J.G., Huddleston, E.W., and Owens, J.C.. 1982. Rangeland entomology. Annual Review of Entomology 27: 283311.CrossRefGoogle Scholar
Webster, J.M., and Thong, C.H.S.. 1984. Nematode parasites of orthopterans. pp. 697–726 in Nickle, W.R. (Ed.), Plant and Insect Nematodes. Marcel Dekkar, Inc., New York, NY. 925 pp.Google Scholar
Wood, D.M. 1981. Tachinidae. Chapter 110, pp. 1187–1296 in McAlpine, J.F., Peterson, B.V., Shewell, G.E., Teskey, H.J., Vockeroth, J.R., and Wood, D.M. (Eds.), Manual of Nearctic Diptera Vol. I. Agriculture Canada Research Branch Monograph 27: 1674 pp.Google Scholar
Woods, S.A., Streett, D.A., and Henry, J.E.. 1992. Temporal patterns of mortality from an entomopoxvirus and strategies for control of the migratory grasshopper (Melanoplus sanguinipes (F.)). Journal of Invertebrate Pathology 60: 3339.CrossRefGoogle Scholar
Wratten, S. 1992. Farmers weed out the cereal killers. New Scientist 1832: 3135.Google Scholar
Zhang, A., Quarles, W., and Olkowski, W.. 1991. Environmentally sound locust management in China. IPM Practitioner 13(7): 19.Google Scholar