Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-20T12:01:30.527Z Has data issue: false hasContentIssue false

CHIRONOMIDAE (DIPTERA) RESPONSES TO 2800 YEARS OF CULTURAL INFLUENCE; A PALAEOLIMNOLOGICAL STUDY WITH SPECIAL REFERENCE TO SEDIMENTATION, EUTROPHICATION, AND CONTAMINATION PROCESSES

Published online by Cambridge University Press:  31 May 2012

W. F. Warwick
Affiliation:
Department of Fisheries and the Environment, Inland Waters Directorate, N.W.R.I.–W.N.R., Winnipeg, Manitoba R3T 2N6

Abstract

Chironomid fossil assemblages in sediment cores collected from the Bay of Quinte, Lake Ontario, were examined to assess the impact of cultural development on the aquatic environment and to estimate, semi-quantitatively, the relative importance of the various impact processes influencing the chironomid communities. The impact of the six cultures defined in the core—the British–Modern, French, Iroquois, Algonkian, Hopewell, and pre-Hopewell periods—was exerted through eutrophication, sedimentation, and contamination processes. Although the chironomid communities in general followed the accepted theories of faunal response to eutrophication, the impact of sedimentation compounded and at times overshadowed the impact of eutrophication. The chironomid community, which responded to initial European colonization by developing a more eutrophic fauna parallel with increased productivity in the bay, reverted to a more oligotrophic fauna when large scale deforestation of the watershed introduced massive amounts of clay sediments into the bay. The resulting unstable bottom conditions and dilution and/or burial of food materials led to an imbalanced oligotrophic fauna characterized by Micropsectra. This fauna was maintained until the high rates of mineral sediment accumulation declined and the effects of eutrophication became manifest. The transition from the imbalanced oligotrophic fauna to the depleted Chironomus/Procladius fauna tolerant of the present-day eutrophic conditions was so rapid that the intervening mesotrophic Phaenopsectra community was unable to develop fully. The recent increased incidence of deformed larvae implicates industrial and/or agricultural contamination in the continued degradation of the Bay of Quinte fauna.

Primitive cultures similarly had measurable effects on the chironomid communities. The “more eutrophic” fauna engendered by the Hopewell culture was not inhibited by the accompanying accumulation of fine sediments as in the European periods and only reverted to a more oligotrophic fauna when reduced populations brought decreased productivity during the Algonkian and early Iroquois stages.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alhonen, P. and Haavisto, M.-L.. 1969. The biostratigraphical history of Lake Otalampi in southern Finland, with special reference to the remains of subfossil midge fauna. Bull. geol. Soc. Finland 41: 157164.CrossRefGoogle Scholar
Andersen, F. S. 1938. Spätglaciale Chironomiden. Meddr Dansk. geol. Foren. 9(3): 320326.Google Scholar
Berger, W. H. and Heath, G. R.. 1968. Vertical mixing in pelagic sediments. J. mar. Res. 26(2): 134143.Google Scholar
Brinkhurst, R. O. et al. 1968. Components of the bottom fauna of the St. Lawrence Great Lakes. Univ. Toronto Gt Lakes Inst. PR 33.Google Scholar
Brundin, L. 1949. Chironomiden und andere Bodentiere der südschwedischen Urgebirgsseen. Rep. Inst. Freshwat. Res. Drottningholm 30: 1914.Google Scholar
Brundin, L. 1956. Die bodenfaunistischen Seetypen und ihre Anwendbarkeit auf die Südhalbkugel. Zugleich eine Theorie der production biologischen Bedeutung der glazialen Erosion. Rep. Inst. Freshwat. Res. Drottningholm 37: 186253.Google Scholar
Bryce, D. 1962. Chironomidae (Diptera) from fresh water sediments with special reference to Malham Tarn (Yorks.). Trans. Soc. Brit. Ent. 15: 4154 (f 1–4).Google Scholar
Canada Yearbook. 1931. Ottawa, Printer to the King.Google Scholar
Canniff, W. 1869. A history of the settlement of Upper Canada, with special reference to the Bay of Quinte. Dudley and Burns, Toronto.Google Scholar
Chutter, F. M. 1969. The effects of silt and sand on the invertebrate fauna of streams and rivers. Hydrobiologia 34: 5776.Google Scholar
Clair, T. and Paterson, C. G.. 1976. Effect of a salt water intrusion on a freshwater Chironomidae community: a paleolimnological study. Hydrobiologia 48(2): 131135.Google Scholar
Cowan, H. I. 1928. British emigration to British North America. Univ. Toronto Stud. History Econ. 4(2). The University Library: published by the Librarian, 1928. 275 pp.Google Scholar
Coyne, J. H. 1904. Discovery and exploration of the Bay of Quinte. Ont. hist. Soc. Pap. Rec. 5: 720.Google Scholar
Cruikshank, E. A. 1934. The settlement of the United Empire Loyalists on the upper St. Lawrence and Bay of Quinte in 1784: a documentary record. Ontario Historical Society, Toronto.Google Scholar
Damiani, V. et al. 1973. Freshwater ferromanganese nodules from the Big Bay section of the Bay of Quinte, northern Lake Ontario. Proc. 16th Conf. Gt Lakes Res. (1973), pp. 397403. Int. Ass. Great Lakes Res.Google Scholar
Deevey, E. S. 1942. Studies on Connecticut lake sediments. III. The biostratonomy of Linsley Pond. Parts I and II. Am. J. Sci. 240: 233–264, 313338.Google Scholar
Dept. of Energy and Resources Management of Ontario. 1970. Lower Trent Conservation Report, 1970. Vol. III. History. 37 pp.Google Scholar
Dept. of Lands and Forests of Ontario. 1965. A history of Lindsay Forest District. District History Ser. 18 (1965).Google Scholar
Dept. of Planning and Development of Ontario. 1957. Napanee Valley conservation report.Google Scholar
Edgington, D. N. and Robbins, J. A.. 1976. Patterns of deposition of natural and fallout radionuclides in the sediments of Lake Michigan and their relation to limnological processes. In Nriagu, J. O. (Ed.), Environmental Biogeochemistry. Vol. 2. Metals transfer and ecological mass balances. Ann Arbor Science Publ.Google Scholar
Fenton, W. N. 1940. Problems arising from the historic northeastern position of the Iroquois. Washington. Smithson. misc. Collns 100: 159251.Google Scholar
Folk, R. L. and Ward, W. C.. 1957. Brazos River bar: a study in the significance of grain size parameters. J. sed. Petr. 27(1): 326.Google Scholar
Frey, D. G. 1955. Längsee: a history of meromixis. Memorie 1st Ital. Idrobiol. Suppl. 8: 141164.Google Scholar
Gams, H. 1927. Die Geschichte der Lunzer Seen, Moore und Walder. Int. Revue ges. Hydrobiol. Hydrogr. 18: 302387.Google Scholar
Goulden, C. E. 1964 a. The history of the cladoceran fauna of Esthwaite Water (England) and its limnological significance. Arch. Hydrobiol. 60: 152.Google Scholar
Goulden, C. E. 1964 b. Progressive changes in the cladoceran and midge fauna during the ontogeny of Esthwaite Water. Verh. int. Verein. theor. angew. Limnol. 15: 10001005.Google Scholar
Grimås, U. 1961. The bottom fauna of natural and impounded lakes in northern Sweden (Ankarvattnet and Blon). Rep. Inst. Freshwat. Res. Drottningholm 42: 183237.Google Scholar
Guillet, E. C. 1957. The Valley of the Trent. Publ. Champlain Soc. Ont. Ser. 1. The Champlain Society, Toronto.Google Scholar
Hamilton, A. L. et al. 1969. A classification of the nearctic Chironomidae. Tech. Rep. Fish. Res. Bd Can. 124.Google Scholar
Hamilton, A. L. and Sæther, O. A.. 1971. The occurrence of characteristic deformities in the chironomid larvae of several Canadian lakes. Can. Ent. 103(3): 363368.CrossRefGoogle Scholar
Harmsworth, R. V. 1968. The developmental history of Blelham Tarn (England) as shown by animal microfossils, with special reference to the Cladocera. Ecol. Monogr. 38: 223241.Google Scholar
Hofmann, W. 1971 a. Die postglaziale Entwicklung der Chironomiden-und Chaoborus-Fauna (Dipt.) des Schöhsees. Arch. Hydrobiol. Suppl. 40(1/2). 74 pp.Google Scholar
Hofmann, W. 1971 b. Zur Taxonomie und Palökologie subfossiler Chironomiden (Dipt.) in Seesedimenten. Arch. Hydrobiol. Beih. Ergebn. Limnol. 6: 150.Google Scholar
Howe, C. D. and White, J. H.. 1913. Trent Watershed Survey: a reconnaissance. Commission of Conservation, Canada, Committee on Forests. Bryant Press, Toronto.Google Scholar
Hunt, G. E. 1940. The wars of the Iroquois. A study in intertribal trade relations. Univ. Wisconsin Press.Google Scholar
Hurley, D. A. and Christie, W. J.. 1977. Depreciation of the warm-water fish community in the Bay of Quinte, Lake Ontario. J. Fish. Res. Bd Can. 34: 18491860.CrossRefGoogle Scholar
Hutchinson, G. E. et al. 1970. Ianula: an account of the history and development of the Lago di Monterosi, Latium, Italy. Trans. Am. phil. Soc. 60(4): 1178.Google Scholar
Innis, H. A. and Lower, A. R. M.. 1933. Select documents in Canadian economic history, 1783–1885. Univ. Toronto Press.Google Scholar
Johnson, M. G. 1970. Production, energy flow and structure in benthic macroinvertebrate communities of Lake Ontario. Ph.D. Thesis, Univ. Toronto.Google Scholar
Johnson, M. G. and Brinkhurst, R. O.. 1971 a. Associations and species diversity in benthic macro-invertebrates of Bay of Quinte and Lake Ontario. J. Fish. Res. Bd Can. 28: 16831697.CrossRefGoogle Scholar
Johnson, M. G. and Brinkhurst, R. O.. 1971 b. Production of benthic macroinvertebrates of Bay of Quinte and Lake Ontario. J. Fish. Res. Bd Can. 28: 16991714.Google Scholar
Johnson, M. G. and Brinkhurst, R. O.. 1971 c. Benthic community metabolism in Bay of Quinte and Lake Ontario. J. Fish. Res. Bd Can. 28: 17151725.Google Scholar
Johnson, M. G. and Owen, G. E.. 1971. Nutrients and nutrient budgets in the Bay of Quinte, Lake Ontario. J. Water Poll. Control Fed. 43(5): 836853.Google Scholar
Johnston, C. M. 1964. The Valley of the Six Nations. Publ. Champlain Soc. Ont. Ser. 7. The Champlain Society, Toronto.Google Scholar
Lower, A. R. M. 1973. Great Britain's Woodyard; British America and the Timber Trade. McGill–Queen's Univ. Press, Montreal and London.Google Scholar
Lower, A. R. M. et al. 1938. The North American assault on the Canadian Forest: A history of the lumber trade between Canada and the United States. Ryerson Press, Toronto.Google Scholar
Lundbeck, J. 1936. Untersuchungen über die Bodenbesiedlung der Alpenrandseen. Arch. Hydrobiol. Suppl. 10: 207358.Google Scholar
MacKenzie, C. 1907. Cataraqui. Pap. Rec. Ont. Hist. Soc. 8: 142146.Google Scholar
Mackereth, F. J. H. 1969. A short core sampler for subaqueous deposits. Limnol. Oceanogr. 14(1): 145151.Google Scholar
McAndrews, J. H. and Boyko, M.. 1972. Dating recent sediment in Lake Ontario by correlation with a varve dated pollen diagram. Proc. 15th Conf. Gt Lakes Res (1972) (Abstract). Int. Ass. Great Lakes Res.Google Scholar
McCombie, A. M. 1967. A recent study of the phytoplankton of the Bay of Quinte. 1963–1964. Proc. 15th Conf. Gt Lakes Res (1967), pp. 3762. Int. Ass. Great Lakes Res.Google Scholar
Megard, R. O. 1964. Biostratigraphic history of Dead Man Lake, Chuska Mountains, New Mexico. Ecology 45(3): 529546.Google Scholar
Mero, J. L. 1965. The mineral resources of the sea. Elsevier, N.Y.Google Scholar
Millard, E. S. and Johnson, M. G.. Primary production in the Bay of Quinte. Ms., presented at the Project Quinte Workshop, 14–16 Nov. 1977.Google Scholar
Minns, C. K. et al. Nutrient budgets for the Bay of Quinte 1965–1976. Ms., presented at the Project Quinte Workshop, 14–16 Nov. 1977.Google Scholar
Mosimann, J. E. 1965. Statistical methods for the pollen analyst: multinomial and negative multinational techniques. pp. 636673In Kummel, B. and Raup, D. (Eds.), Handbook of Paleontological Techniques. Freeman, San Francisco, Calif.Google Scholar
Nicholls, K. H. and Carney, E. C.. The phytoplankton of the Bay of Quinte. I. Taxonomy. Ms., presented at the Project Quinte Workshop, 14–16 Nov. 1977.Google Scholar
Pagast, F. 1943. Über die Bodenchironomiden des Lunzer Untersees. Int. Revue ges. Hydrobiol. Hydrogr. 43: 469479.Google Scholar
Preston, R. A. 1959. Kingston before the war of 1812. A collection of documents. Publ. Champlain Soc. Ont. Ser. 3. The Champlain Society, Toronto.Google Scholar
Preston, R. A. and Lamontagne, L.. 1958. Royal Fort Frontenac. Publ. Champlain Soc. 2. The Champlain Society, Toronto.Google Scholar
Reiss, F. 1968. Ökologische und systematische Untersuchungen an Chrionomiden (Diptera) des Bodensees. Arch. Hydrobiol. 64(2/3): 176323.Google Scholar
Robinson, G. Water quality trends in the Bay of Quinte. Ms., presented at the Project Quinte Workshop, 14–16 Nov. 1977.Google Scholar
Sæther, O. A. 1970. A survey of the bottom fauna in lakes of the Okanagan Valley, British Columbia. Tech. Rep. Fish. Res. Bd Can. 196.Google Scholar
Sæther, O. A. 1971. Notes on general morphology and terminology of the Chironomidae (Diptera). Can. Ent. 103: 12371260.CrossRefGoogle Scholar
Sæther, O. A. 1975. Nearctic chironomids as indicators of lake typology. Verh. int. Verein. theor. angew. Limnol. 19: 31273133.Google Scholar
Sæther, O. A. 1976. Revision of Hydrobaenus, Trissocladius, Zalutschia, Paratrissocladius and some related genera (Diptera: Chironomidae). Bull. Fish. Res. Bd Can. 195.Google Scholar
Sæther, O. A. 1977. Taxonomic studies on Chironomidae: Nanocladius, Pseudochironomus and the Harnischia complex. Bull. Fish. Res. Bd Can. 196.Google Scholar
Sæther, O. A. 1978. Chironomid communities as water quality indicators. Holarctic Ecol. 2: 6574.Google Scholar
Sagard-Théodat, G. 1939. Sagard's long journey to the Huron country. Publ. Champlain Soc. Ont. Ser. 25. [Edited by Wrong, G. M. and translated by Langton, H. H..] The Champlain Society, Toronto.Google Scholar
Southwood, T. R. E. 1966. Ecological methods with particular reference to the study of insect populations. Methuen, London.Google Scholar
Speck, F. G. 1955. The Iroquois, a study in cultural evolution. Bull. Cranbrook Inst. Sci. 23. Bloomfield Hills, Mich.Google Scholar
Stahl, J. B. 1959. The developmental history of the chironomid and Chaoborus faunas of Myers Lake. Invest. Indiana Lakes and Streams 5(2): 47102.Google Scholar
Stark, D. M. 1976. Paleolimnology of Elk Lake, Itasca State Park, northwestern Minnesota. Arch. Hydrobiol. Suppl. 50(2/3): 208274.Google Scholar
Tucker, A. 1948. The phytoplankton of the Bay of Quinte. Trans. Am. microsc. Soc. 67: 365383.Google Scholar
Warwick, W. F. 1975. The impact of man on the Bay of Quinte, Lake Ontario, as shown by the subfossil chironomid succession (Chironomidae, Diptera). Verh. int. Verein. theor. angew. Limnol. 19: 31343141.Google Scholar
Warwick, W. F. 1978. Man and the Bay of Quinte, Lake Ontario: 2800 years of cultural influence, with special reference to the Chironomidae (Diptera), sedimentation and eutrophication. Unpubl. Ph.D. Thesis, Univ. Manitoba, Winnipeg.Google Scholar
Wentz, D. A. and Lee, G. F.. 1969. Sedimentary phosphorus in lake cores — observations on depositional pattern in Lake Mendota. Environ. Sci. Tech. 3: 754759.Google Scholar