Vasodilatation Measurement Using Finger Vascular Images by Near-Infrared Light and Comparison with RH-PAT

Article Preview

Abstract:

Examination of vascular endothelial function can help infer atherosclerosis progression. This study investigated whether vascular visualization by near-infrared (NIR) light can detect vasodilatation after cuff pressure release of the upper arm and what the correlation is between the brightness decrease ratio (R1) corresponding to vasodilation and the reactive hyperemia index (RHI). We obtained finger vascular images of 53 male subjects by photographing NIR light (wavelength 850 nm) transmitted through the middle phalanx of the middle finger with a charge-coupled device camera. The upper arm was compressed for 10 min using a cuff (200 mmHg), and vascular images before and after cuff compression release were obtained. We analyzed the finger vascular images by NIR light and digital pulse volume using endothelial peripheral arterial tonometry (Endo-PAT). We also calculated the average brightness of each vascular image. Using only the data of the ischemic finger, R1 was defined using the average brightness just before cuff release and the minimum average brightness after cuff release. The brightness of vascular images of the ischemic finger decreased after cuff release probably because of vasodilation. We found significant correlation between R1 and the RHI (r = 0.52; P < 0.001). R1 in the lowest RHI quartile was significantly smaller compared to the highest and second-highest RHI quartiles (P < 0.05). Vascular visualization by NIR light can detect vasodilation after cuff release. This is significantly correlated with the RHI on Endo-PAT.

You might also be interested in these eBooks

Info:

Pages:

41-50

Citation:

Online since:

January 2022

Export:

Price:

* - Corresponding Author

[1] D.S. Celermajer, K.E. Sorensen, V.M. Gooch, D.J. Spiegelhalter, O.I. Miller, I.D. Sullivan, J.K. Lloyd, J.E. Deanfield, Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis, Lancet 340 (1992) 1111-1115.

DOI: 10.1016/0140-6736(92)93147-f

Google Scholar

[2] D.S. Celermajer, K.E. Sorensen, D.J. Spiegelhalter, D. Georgakopoulos, J. Robinson, J.E. Deanfield, Aging is associated with endothelial dysfunction in healthy men years before the age-related decline in women, J. Am. Coll. Cardiol. 24 (1994) 471-476.

DOI: 10.1016/0735-1097(94)90305-0

Google Scholar

[3] P.M. Vanhoutte, Endothelium and control of vascular function. State of the art lecture, Hypertension 13 (1989) 658-667.

DOI: 10.1161/01.hyp.13.6.658

Google Scholar

[4] T.F. Luscher, Imbalance of endothelium-derived relaxing and contracting factors. A new concept in hypertension?, Am. J. Hypertens. 3 (1990) 317-330.

DOI: 10.1093/ajh/3.4.317

Google Scholar

[5] R. Ross, Atherosclerosis--an inflammatory disease, N. Engl. J. Med. 340 (1999) 115-126.

Google Scholar

[6] D.H.J. Thijssen, R.M. Bruno, A.C.C.M. van Mil, S.M. Holder, F. Faita, A. Greyling, P.L. Zock, S. Taddei, J.E. Deanfield, T. Luscher, D.J. Green, L. Ghiadoni, Expert consensus and evidence-based recommendations for the assessment of flow-mediated dilation in humans, Eur. Heart J. 40 (2019) 2534-2547.

DOI: 10.1093/eurheartj/ehz350

Google Scholar

[7] D.S. Celermajer, Endothelial dysfunction: Does it matter? Is it reversible?, J. Am. Coll. Cardiol. 30 (1997) 325-333.

Google Scholar

[8] P.J. Butler, S. Weinbaum, S. Chien, D.E. Lemons, Endothelium-dependent, shear-induced vasodilation is rate-sensitive, Microcirculation 7 (2000) 53-65.

DOI: 10.1111/j.1549-8719.2000.tb00742.x

Google Scholar

[9] S. Kinlay, P. Libby, P. Ganz, Endothelial function and coronary artery disease, Curr. Opin. Lipidol. 12 (2001) 383-389.

DOI: 10.1097/00041433-200108000-00003

Google Scholar

[10] M.C. Corretti, T.J. Anderson, E.J. Benjamin, D. Celermajer, F. Charbonneau, M.A. Creager, J. Deanfield, H. Drexler, M. Gerhard-Herman, D. Herrington, P. Vallance, J. Vita, R. Vogel, Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force, J. Am. Coll. Cardiol. 39 (2002) 257-265.

DOI: 10.1016/s0735-1097(01)01746-6

Google Scholar

[11] P.O. Bonetti, G.W. Barsness, P.C. Keelan, T.I. Schnell, G.M. Pumper, J.T. Kuvin, R.P. Schnall, D.R. Holmes, S.T. Higano, A. Lerman, Enhanced external counterpulsation improves endothelial function in patients with symptomatic coronary artery disease, J. Am. Coll. Cardiol. 41 (2003) 1761-1768.

DOI: 10.1016/s0735-1097(03)00329-2

Google Scholar

[12] J.T. Kuvin, A.R. Patel, K.A. Sliney, N.G. Pandian, J. Sheffy, R.P. Schnall, R.H. Karas, J.E. Udelson, Assessment of peripheral vascular endothelial function with finger arterial pulse wave amplitude, Am. Heart J. 146 (2003) 168-174.

DOI: 10.1016/s0002-8703(03)00094-2

Google Scholar

[13] M. Dhindsa, S.M. Sommerlad, A.E. DeVan, J.N. Barnes, J. Sugawara, O. Ley, H. Tanaka, Interrelationships among noninvasive measures of postischemic macro- and microvascular reactivity, J. Appl. Physiol. 105 (2008) 427-432.

DOI: 10.1152/japplphysiol.90431.2008

Google Scholar

[14] N.M. Hamburg, J. Palmisano, M.G. Larson, L.M. Sullivan, B.T. Lehman, R.S. Vasan, D. Levy, G.F. Mitchell, J.A. Vita, E.J. Benjamin, Relation of brachial and digital measures of vascular function in the community The Framingham heart study, Hypertension 57 (2011) 390-396.

DOI: 10.1161/hypertensionaha.110.160812

Google Scholar

[15] M.C. Babcock, L.E. DuBose, T.L. Witten, A. Brubaker, B.L. Stauffer, K.L. Hildreth, K.L. Moreau, Assessment of macrovascular and microvascular function in aging males, J. Appl. Physiol. 130 (2021) 96-103.

DOI: 10.1152/japplphysiol.00616.2020

Google Scholar

[16] O.T. Raitakari, D.S. Celermajer, Flow-mediated dilatation, Br. J. Clin. Pharmacol. 50 (2000) 397-404.

Google Scholar

[17] M.J. Mullen, R.K. Kharbanda, J. Cross, A.E. Donald, M. Taylor, P. Vallance, J.E. Deanfield, R.J. MacAllister, Heterogenous nature of flow-mediated dilatation in human conduit arteries in vivo: relevance to endothelial dysfunction in hypercholesterolemia, Circ. Res. 88 (2001) 145-151.

DOI: 10.1161/01.res.88.2.145

Google Scholar

[18] D.S. Celermajer, Reliable endothelial function testing: at our fingertips?, Circulation 17 (2008) 2428-2430.

DOI: 10.1161/circulationaha.108.775155

Google Scholar

[19] K. Motozato, Y. Suematsu, K. Norimatsu, T. Kusumoto, S. Miura, Reactive hyperemia index associated with atherosclerotic cardiovascular disease under treatment for lifestyle diseases, J. Clin. Med. Res. 12 (2020) 293-299.

DOI: 10.14740/jocmr4100

Google Scholar

[20] S. Shimawaki, N. Sakai, Change in blood vessel images of the human finger using near-infrared radiation while compressing the upper arm, 6th World Congress of Biomechanics (WCB 2010), IFMBE Proceedings 31 (2010) 1262-1265.

DOI: 10.1007/978-3-642-14515-5_320

Google Scholar

[21] S. Shimawaki, N. Sakai, M. Nakabayashi, Relationship between pulse wave velocity and vascular change in the human finger measured with near infra-red light during upper arm compression, Trans. Jpn. Soc. Mech. Eng. Series C 78 (2012) 3741-3748 (in Japanese).

DOI: 10.1299/kikaic.78.3741

Google Scholar

[22] T. Tamura, H. Edo, M. Takada, T. Kubodera, New instrument for monitoring hemoglobin oxygenation, Adv. Exp. Med. Biol. 248 (1989) 103-107.

Google Scholar

[23] K. Bernacki, T. Moron, A. Popowicz, Modified distance transformation for image enhancement in NIR imaging of finger vein system, Sensors 16 (2020) 1644.

DOI: 10.3390/s20061644

Google Scholar

[24] J.R. Landis, G.G. Koch, The measurement of observer agreement for categorical data, Biometrics 33 (1977) 159-174.

DOI: 10.2307/2529310

Google Scholar

[25] A. Nohria, M. Gerhard-Herman, M.A. Creager, S. Hurley, D. Mitra, P. Ganz, Role of nitric oxide in the regulation of digital pulse volume amplitude in humans, J. Appl. Physiol. 101 (2006) 545-548.

DOI: 10.1152/japplphysiol.01285.2005

Google Scholar

[26] A.J. Flammer, T. Anderson, D.S. Celermajer, M.A. Creager, J. Deanfield, P. Ganz, N.M. Hamburg, T.F. Lüscher, M. Shechter, S. Taddei, J.A. Vita, A. Lerman, The assessment of endothelial function: from research into clinical practice, Circulation 126 (2012) 753-767.

DOI: 10.1161/circulationaha.112.093245

Google Scholar

[27] Y. Matsuzawa, S. Sugiyama, H. Sumida, K. Sugamura, T. Nozaki, K. Ohba, J. Matsubara, H. Kurokawa, K. Fujisue, M. Konishi, E. Akiyama, H. Suzuki, Y. Nagayoshi, M. Yamamuro, K. Sakamoto, S. Iwashita, H. Jinnouchi, M. Taguri, S. Morita, K. Matsui, K. Kimura, S. Umemura, K. Ogawa, Peripheral endothelial function and cardiovascular events in high-risk patients, J. Am. Heart Assoc. 2 (2013) e000426.

DOI: 10.1161/jaha.113.000426

Google Scholar

[28] Y. Saito, H. Kitahara, G. Matsumiya, Y. Kobayashi, Preoperative endothelial function and long-term cardiovascular events in patients undergoing cardiovascular surgery, Heart Vessels 34 (2019) 318-323.

DOI: 10.1007/s00380-018-1248-8

Google Scholar