Bone Tissue Response in a Metallic Bone Architecture Microstructure

Article Preview

Abstract:

Porous metallic structures have been developed to mimic the natural bone architecture, having interconnected porosity, disposing enough room to cell migration, anchoring, vascularization, nourishing and proliferation of new bone tissue. Research involving porous titanium has been done with purpose to achieve desirable porosity and increasing of bone-implant bond strength interface. Samples of titanium were prepared by powder metallurgy (PM) with addition of different natural polymers (cornstarch, rice starch, potato starch and gelatin) at proportion of 16wt%. In aqueous solution the hydrogenated metallic powder (TiH2) and the polymer were mixed, homogenized and frozen in molds near net shape. The water was removed in kiln and the polymer by thermal treatment in air- (350°C/1h) before sintering in high-vacuum (1300°C/1h). The biological evaluation was performed by in vivo test in rabbits. Histological analysis was performed by scanning electron microscopy (SEM), energy dispersive spectroscopy (SEM-EDS) and fluorescence microscopy (FM). The processing methodologies using natural low cost additives propitiate the production of porous metallic implants in a simplified manner, with different porosities, proper porosity degree (40%), distribution, and maximum pore size of 80 μm to 220 μm depending of natural polymer used. The samples added with rice starch, presented the most similar structure organization when compared to the bone tissue microstructure organization of the trabecular bone. All implants osseointegrated, the pore microarchitecture and its interconnected network allowed bone ingrowth in all pore sizes, but the continuous bone maturation occurred in pores bigger than 80 μm.

You might also be interested in these eBooks

Info:

Pages:

73-85

Citation:

Online since:

June 2014

Export:

Price:

* - Corresponding Author

[1] R.L. Oréfice, M.M. Pereira, H.S. Mansur, Biomateriais – Fundamentos e Aplicações, first ed., Ed. Cultura Médica, Rio de Janeiro, (2006).

Google Scholar

[2] D.A. Puelo, A. Nanci, Undestanding and controlling the bone-implant interface, Biomaterials. 20 (1999) 2311-2321.

Google Scholar

[3] J.E. Lemons, Biomaterials, biomechanics, tissue healing, and immediate-function dental implants, J. Oral Implantol. 30 (2004) 318-324.

DOI: 10.1563/0712.1

Google Scholar

[4] R.Z. Legeros, R.G. Craig, Strategies to affect bone remodeling: osteointegration. J. Bone Miner. Res. 8 (1993) 583-596.

DOI: 10.1002/jbmr.5650081328

Google Scholar

[5] M. Weinlaender, Bone growth around dental implants, Dent. Clin. North. Am. 35 (1991) 585-601.

DOI: 10.1016/s0011-8532(22)00860-6

Google Scholar

[6] L.C. Junqueira, J. Carneiro, Histologia básica, eighth ed., Guanabara Koogan, Rio de Janeiro, (1995).

Google Scholar

[7] X. Liu, P.K. Chu, C. Ding, Surface modification of titanium, titanium alloys, and related materials for biomedical applications, Mat. Science Eng. R. 47 (2004) 49-121.

DOI: 10.1016/j.mser.2004.11.001

Google Scholar

[8] S. Franz, S. Rammelt, D. Scharnweber, J.C. Simon, Immune responses to implants - A review of the implications for the design of immunomodulatory biomaterials, Biomat. 32 (2011) 1-18.

DOI: 10.1016/j.biomaterials.2011.05.078

Google Scholar

[9] H. Shen, L.C. Brinson, Anumerical invention of porous titanium as orthopedic implant material. Mech. Mat. 8 (2011) 420-430.

Google Scholar

[10] A.I. Itäla, H.O. Ylanen, C. Ekholm, K.H. Karlsson, H.T. Aro, Pore diameter of more than 100 micron is not requisite for bone ingrowth in rabbits. J. Biomed. Mater. Res. 58 (2001) 679-683.

DOI: 10.1002/jbm.1069

Google Scholar

[11] S. Kujala, J. Ryhänen, A. Danilov, J. Tuukkanen, Effect of porosity on the osteointegration and bone ingrowth of a weight-bearing nickel–titanium bone graft substitute, Biomat. 24 (2003) 4691-4697.

DOI: 10.1016/s0142-9612(03)00359-4

Google Scholar

[12] G. Ryan, A. Pandit, D.P. Apatsidis, Fabrication methods of porous metals for use in orthopaedic applications, Biomat. 27 (2006) 2651-2670.

DOI: 10.1016/j.biomaterials.2005.12.002

Google Scholar

[13] A. Laptev, M. Bram, H.P. Buchkkemer, D. Stover, Study of production route for titanium parts combining very high porosity and complex shape, Powder Metal. 47 (2004) 85-92.

DOI: 10.1179/003258904225015536

Google Scholar

[14] J. Li, H. Liao, B. Fartash, L. Hermansson, T. Johnsson, Surface-dimpled commercially pure titanium implant and bone ingrowth, Biomat. 18 (1997) 691-696.

DOI: 10.1016/s0142-9612(96)00185-8

Google Scholar

[15] M. Takemoto, S. Fujibayashi, M. Neo, J. Suzuki, T. Kokubo, T. Nakamura, Mechanical properties and osteoconductivity of porous bioactive titanium, Biomat. 26 (2005) 6014-6023.

DOI: 10.1016/j.biomaterials.2005.03.019

Google Scholar

[16] H.E. Götz, M. Müller, A. Emmel, U. Holzwarth, R.G. Erben, R. Stangl, Effect of surface finish on the osseointegration of laser-treated titanium alloy implants, Biomat. 25 (2004) 4057–4064.

DOI: 10.1016/j.biomaterials.2003.11.002

Google Scholar

[17] S.C.P. Cachinho, R.N. Correia, Titanium scaffolds for osteointegration: mechanical, in vitro and corrosion behavior, J. Mater. Sci: Mater. Med. 19 (2008) 451–457.

DOI: 10.1007/s10856-006-0052-7

Google Scholar

[18] A.E. Aguikar Maya, D.R. Grana, A. Hazarabedian, G.A. Kokubo, M.I. Luppo, G. Vigna, Zr-Ti-Nb porous alloy for biomedical application, Mat. Science Eng. C. 32 (2011) 321-329.

DOI: 10.1016/j.msec.2011.10.035

Google Scholar

[19] T.S. Goia, K.B. Violin, M. Yoshimoto, J.C. Bressiani, A.H.A. Bressiani, Osseointegration of Titanium Alloy Macroporous Implants Obtained by PM with Addition of Gelatin, Adv. Science Techn. 76 (2010) 259-263.

DOI: 10.4028/www.scientific.net/ast.76.259

Google Scholar

[20] O.M. Ferri, T. Ebel, R. Bormann, Influence of surface quality and porosity on fatigue behaviour of Ti–6Al–4V components processed by MIM, Mat. Science Eng. A. 527 (2010) 1800–1805.

DOI: 10.1016/j.msea.2009.11.007

Google Scholar

[21] J.C. Li, D. C Dunand, Mechanical properties of directionally freeze-cast titanium foams. Acta Mat. 59 (2011) 146-158.

DOI: 10.1016/j.actamat.2010.09.019

Google Scholar

[22] P. Heinl, L. Müller, C. Körner, R.F. Singer, F.A. Müller, Cellular Ti–6Al–4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomat. 4 (2008) 1536–1544.

DOI: 10.1016/j.actbio.2008.03.013

Google Scholar

[23] F.E. Wiria, J.Y.M. Shyan, P.N. Lim, F.G.C. Wen, J.F. Yeo, T. Cao, Printing of Titanium implant prototype. Mat. Design. 31 (2010) S101–S105.

DOI: 10.1016/j.matdes.2009.12.050

Google Scholar

[24] E. Gregorová, W. Pabst, I. Bohačenko, Characterization of different starch types for their application in ceramic processing, J. Eur. Ceram. Soc. 26 (2006) 1301-1309.

DOI: 10.1016/j.jeurceramsoc.2005.02.015

Google Scholar

[25] T.S. Goia, K.B. Violin, J.C. Bressiani, A.H.A. Bressiani, Mimicking Bone Architecture in a Metallic Structure, Adv. Science Techn. 84 (2013) 7-12.

DOI: 10.4028/www.scientific.net/ast.84.7

Google Scholar

[26] E. Gemelli, N.H.A. Camargo, Oxidation kinetics of commercially pure titanium, Rev. Matéria. 12 (2007) 525-531.

DOI: 10.1590/s1517-70762007000300014

Google Scholar

[27] C.J. Hernandez , T.M. Keaveny, A biomechanical perspective on bone quality, Bone. 39 (2006) 1173–1181.

DOI: 10.1016/j.bone.2006.06.001

Google Scholar

[28] D. Chappard, M. -F. Baslé, E. Legrand, M. Audran, Trabecular bone microarchitecture: A review, Morphologie. 92 (2008) 162—170.

DOI: 10.1016/j.morpho.2008.10.003

Google Scholar

[29] C. Pautke, S. Vogt, K. Kreutzer, C. Haczek, G. Wexel, A. Kolk, A.B. Imhoff, H. Zitzelsberger, 5 S. Milz, T. Tischer, Characterization of eight different tetracyclines: advances in fluorescence bone labeling, J. Anat. 217 (2010) 76-82.

DOI: 10.1111/j.1469-7580.2010.01237.x

Google Scholar