Natural Fibers vs. Synthetic Fibers Reinforcement: Effect on Resistance of Mortars to Impact Loads

Article Preview

Abstract:

Given their specific properties, their natural and renewable sources and their low environmental impact in production, natural fibers offer an opportunity for the development of eco-friendly cement-based composites. The main objective of this experimental work is to evaluate the resistance to the impact load of mortars incorporating natural fibers or polypropylene fibers at 28 days. The assessment was carried out according to an experimental protocol developed in our laboratory. The method consists in dropping a metallic ball on a square shaped specimen of 30x30x2 cm3 to determine the energy supported by each sample. For each specimen, the number of blows required for the first crack initiation and for the total collapse of specimen are detected using a device allowing to measure the speed of ultrasonic waves. The device was fixed on the specimen itself. In order to fulfill the mechanical identity card of the composites, flexural and compression tests were also carried out at 28 days. In this experimental protocol, the pozzolanic binder was considered with different fiber percentages of polypropylene (0.25% and 0.5% by mass of binder) and of natural fibers (0.5% and 1% by mass of binder). All fibers have a length of 12 mm. Results show that natural fiber reinforcement could be considered as an ecological alternative to polypropylene fiber one to improve the resistance of mortars to impact loads.

You might also be interested in these eBooks

Info:

Pages:

95-102

Citation:

Online since:

January 2022

Export:

Price:

* - Corresponding Author

[1] Ardanuy, M., Claramunt, J., García-Hortal, J., Barra Bizinotto, M., 2011. Fiber-matrix interactions in cement mortar composites reinforced with cellulosic fibers. Cellulose 18, 281–289. https://doi.org/10.1007/s10570-011-9493-3.

DOI: 10.1007/s10570-011-9493-3

Google Scholar

[2] Baley, C., 2004. Fibres naturelles de renfort pour matériaux composites 37.

DOI: 10.51257/a-v1-am5130

Google Scholar

[3] Banthia, N., Sheng, J., 1996. Fracture toughness of micro-fiber reinforced cement composites. Cement and Concrete Composites 18, 251–269. https://doi.org/10.1016/0958-9465(95)00030-5.

DOI: 10.1016/0958-9465(95)00030-5

Google Scholar

[4] Brandt, A.M., 2008. Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering. Composite Structures, Fourteenth International Conference on Composite Structures 86, 3–9. https://doi.org/10.1016/j.compstruct.2008.03.006.

DOI: 10.1016/j.compstruct.2008.03.006

Google Scholar

[5] Chafei, S., 2014. Influence de différents traitements sur les comportements rhéologique et mécanique d'un composite cimentaire mortier-fibres de lin (These de doctorat). Caen.

Google Scholar

[6] Commission of the European Union. Directorate General for Energy., ICF International., 2015. Energy Performance of Buildings Directive (EPBD): compliance study : final report. Publications Office, LU.

Google Scholar

[7] Dinh, T.M., 2014. Contribution au développement de béton de chanvre préfabriqué utilisant un liant pouzzolanique ²innovant (These de doctorat). Toulouse 3.

Google Scholar

[8] Le Hoang, T., 2013. Etude de caractérisation du comportement de composites cimentaires incorporant des fibres courtes de lin (These de doctorat). Caen.

Google Scholar

[9] Li, Z., Wang, L., Wang, X., 2004. Compressive and flexural properties of hemp fiber reinforced concrete. Fibers and Polymers 5, 187–197. https://doi.org/10.1007/BF02902998.

DOI: 10.1007/bf02902998

Google Scholar

[10] Li, Z., Wang, X., Wang, L., 2006. Properties of hemp fibre reinforced concrete composites. Composites Part A: Applied Science and Manufacturing 37, 497–505. https://doi.org/10.1016/j.compositesa.2005.01.032.

DOI: 10.1016/j.compositesa.2005.01.032

Google Scholar

[11] Magniont, C., 2010. Contribution à la formulation et à la caractérisation d'un écomatériau de construction à base d'agroressources (phd). Université de Toulouse, Université Toulouse III - Paul Sabatier.

DOI: 10.35562/balisages.1003

Google Scholar

[12] Nataraja, M.C., Dhang, N., Gupta, A.P., 1999. Statistical variations in impact resistance of steel fiber-reinforced concrete subjected to drop weight test. Cement and Concrete Research 29, 989–995. https://doi.org/10.1016/S0008-8846(99)00052-6.

DOI: 10.1016/s0008-8846(99)00052-6

Google Scholar

[13] Page, J., 2017. Formulation et caractérisation d'un composite cimentaire biofibré pour des procédés de construction préfabriquée (These de doctorat). Normandie.

Google Scholar

[14] Ramakrishna, G., Thirumalai, S., 2005. Impact strength of a few natural fibre reinforced cement mortar slabs: A comparative study. Cement and Concrete Composites 27, 547–553. https://doi.org/10.1016/j.cemconcomp.2004.09.006.

DOI: 10.1016/j.cemconcomp.2004.09.006

Google Scholar

[15] Santos, S., Tonoli, G.H.D., Mejia, J., Fiorelli, J., Jr, H., 2015. Non-conventional cement-based composites reinforced with vegetable fibers: A review of strategies to improve durability. Materiales de Construcción 65. https://doi.org/10.3989/mc.2015.05514.

DOI: 10.3989/mc.2015.05514

Google Scholar

[16] Sedan, D., 2007. Etude des interactions physico-chimiques aux interfaces fibres de chanvre/ciment : influence sur les propriétés mécaniques du composite (These de doctorat). Limoges.

DOI: 10.1051/mattech:2007038

Google Scholar

[17] Norme NF P18-452 Bétons. Mesure du temps d'écoulement des bétons et des mortiers aux maniabilimètres - AFNOR.

Google Scholar

[18] Norme NF EN 1015-3 5(1999) : Méthodes d'essai des mortiers pour maçonnerie- Détermination de la consistance du mortier frais (avec une table a secousse).

Google Scholar

[19] Norme NF EN 169-1 : Méthodes d'essai des ciments pour maçonnerie- Détermination des résistances mécaniques.

Google Scholar