Sol-Gel Synthesis of Highly Stable Nano Sized MgO from Magnesium Oxalate Dihydrate

Article Preview

Abstract:

A sol-gel method was used to synthesize a highly stable form of MgO from magnesium oxalate dihydrate. The sol-gel products were characterized using simultaneous thermogravimetric analysis (STA), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and UV-Visible light spectroscopy (UV-Vis). From the XRD analysis, all the MgO samples showed a single face-centered cubic phase. FESEM micrographs showed a crystallite size ranging from 10 nm to 59 nm. The size of the MgO crystallites increased with increasing temperatures. The crystallite size of the MgO is still relatively small, that is, below 100 nm even when the precursor was calcined at a higher temperature of 950 °C and a longer time of 36 h. Such results indicated that the growth of the crystallites is slow for this route of synthesis. The morphologies of the MgO samples are varied from the all spherical of the lower temperature to the more cubic shape with less agglomeration of the higher calcined samples. The band gap energy of the MgO samples also increased with temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

137-142

Citation:

Online since:

July 2012

Export:

Price:

[1] V. Mutreja, S. Singh and A. Ali, Renew. Energy 36 (2011), p.2253.

Google Scholar

[2] E. Putun, Energy 35 (2010), p.2761.

Google Scholar

[3] Y. Xu, E. Dervishi, A.R. Biris and A.S. Biris, Mater. Lett. 65 (2011), p.1878.

Google Scholar

[4] W. Zhang, L.H. Tay, S.S. Lim, Y. Wang, Z. Zhong and R. Xu, Appl. Catal., B 95 (2010), p.93.

Google Scholar

[5] N. Rakmak, W. Wiyaratn, C. Bunyakan and J. Chungsiriporn, Chem. Eng. J. 162 (2010), p.84.

Google Scholar

[6] M.A.L. Braulio, P.O.C. Brant, L.R.M. Bittencourt and V.C. Pandolfelli, Ceram. Int. 35 (2009), p.3327.

Google Scholar

[7] G. Xiao, R. Singh, A. Chaffee and P. Webley, Int. J. Greenh. Gas Control 5 (2011), p.634.

Google Scholar

[8] K. Christova, A. Manov, J. Nyhus, U. Thisted, O. Herstad, S.E. Foss, K.N. Haugen and K. Fossheim, J. Alloys Compd. 340 (2002), p.1.

DOI: 10.1016/s0925-8388(01)02021-7

Google Scholar

[9] I. Katayama, H. Shimosato, M. Ashida, I. Kawayama, M. Tonouchi and T. Itoh, J. Lumin. 128 (2008), p.998.

DOI: 10.1016/j.jlumin.2009.08.011

Google Scholar

[10] E. Alvarado, L.M. Torres-Martinez, A.F. Fuentes and p. Quintana, Polyhedron 19 (2000), p.2345.

Google Scholar

[11] Y. Ding, G. Zhang, H. Wu, B. Hai, L. Wang and Y. Qian, Chem. Mater. 13 (2001), p.435.

Google Scholar

[12] P. Ouraipryvan, T. Sreethawong and S. Chavadej, Mater. Lett. 63 (2009), p.1862.

Google Scholar

[13] M. Sharma and P. Jeevanandam, J. Alloys Compd. 509 (2011), p.7881.

Google Scholar

[14] A. Kumar and J. Kumar, J. Phys. Chem. Solids 69 (2008), p.2764.

Google Scholar

[15] A. Kumar, S. Thota, S. Varma and J. Kumar, J. Lumin. 131 (2011), p.640.

Google Scholar

[16] T. Selvamani, T. Yagyu, S. Kawasaki and I. Mukhopadhyay, Catal. Commun. 11 (2011), p.537.

Google Scholar

[17] L. Qin, J. Zhao and X. Zou, Mater. Chem. Phys. 113 (2009), p.468.

Google Scholar

[18] N. Sutradhar, A. Sinhamahapatra, B. Roy, H.C. Bajaj, I. Mukhopadhyay and A.B. Panda, Mater. Res. Bull. 46 (2011), p.2163.

Google Scholar

[19] D. Chen and E.H. Jordan, Mater. Lett. 63 (2009), p.783.

Google Scholar

[20] E. Esmaeili, A. Khodadadi and Y. Mortazavi, J. Eur. Ceram. Soc. 29 (2009), p.1061.

Google Scholar

[21] M.A. Shah and A. Qurashi, J. Alloys Compd. 482 (2009), p.548.

Google Scholar

[22] T.X. Phuoc, B.H. Howard, D.V. Martello, Y. Soong and M.K. Chyu, Opt. Laser Eng. 46 (2008), p.829.

Google Scholar

[23] L. Sun, H. He, C. Liu and Z. Ye, Appl. Surf. Sci. 257 (2011), p.3607.

Google Scholar

[24] Y. Su, H. Wei, Z. Zhou, Z. Yang, L. Wei and Y. Zhang, Mater. Lett. 65 (2011), p.100.

Google Scholar

[25] A. Kumar and J. Kumar, Solid State Commun. 147 (2008), p.405.

Google Scholar

[26] Y. He, J. Wang, H. Deng, Q. Yin and J. Gong, Ceram. Int. 34 (2008), p.1399.

Google Scholar

[27] G. Duan, X. Yang, J. Chen, G. Huang, L. L and X. Wang, Powder Technol. 172 (2007), p.27.

Google Scholar

[28] T. Lopez, I. Garcia-Cruz and R. Gomez, J. Catal. 127 (1991), p.75.

Google Scholar

[29] Bokhimi. and A. Morales, J. Solid State Chem. 115 (1995), p.411.

Google Scholar

[30] R. Portillo, T. Lopez and R. Gomez, Langmuir 12 (1996), p.40.

Google Scholar

[31] H.S. Jung, J.K. Lee, J.Y. Kim and K.S. Hong, J. Colloid Interface Sci. 259 (2003), p.127.

Google Scholar

[32] V. Stengl, S. Bakardjieva, M. Marikova, P. Bezdicka and J. Subrt., Mater. Lett. 57 (2003), p.3998.

Google Scholar

[33] H.S. Jung, J.K. Lee, J.Y. Kim and K.S. Hong, J. Solid State Chem. 175 (2003), p.278.

Google Scholar

[34] T. Selvamani, A. Sinhamahapatra, D. Bhattacharjya and I. Mukhopadhyay, Mater. Chem. Phys. 129 (2011), p.853.

Google Scholar

[35] C. Suryanarayana and M. Grant Norton, X-ray diffraction: A practical Approach, Plenum Press, New York (1998).

Google Scholar

[36] Q. Yang, J. Sha, L. Wang, J. Wang and D. Yang, Mater. Sci. Eng., C 26 (2006), p.1097.

Google Scholar

[37] N. Takahashi, Solid State Sci. 9 (2007), p.722.

Google Scholar

[38] M. Zhao, X.L. Chen, X.N. Zhang, H. Li, H.Q. Li and L. Wu, Chem. Phys. Lett. 388 (2004), p.7.

Google Scholar

[39] R. Rusdi, A. Abd Rahman, N.S. Mohamed, N. Kamarudin and N. Kamarulzaman, Powder Technol. 210 (2011), p.18.

Google Scholar