An Analytical Thermomechanical Modelling of Peripheral Milling Process Using a Predictive Machining Theory

Article Preview

Abstract:

In this work, a predictive machining theory, based on an analytical thermomechanical approach of oblique cutting [17,18], has been applied to the peripheral milling process. That leads to a three dimensional cutting force model for end milling operations which is an alternative approach in comparison with the mechanistic one. In this model, the material characteristics such as strain rate sensitivity, strain hardening and thermal softening are considered and thermomechanical coupling and inertia effects are accounted for. Calculated and experimental results are compared for up-milling.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

93-100

Citation:

Online since:

April 2011

Export:

Price:

[1] J. Tlusty, P. MacNeil: Annals of CIRP Vol 24 (1) (1975) p.21.

Google Scholar

[2] W. Kline, R.E. DeVor, J. Lindberg: J. Mach. Tool. Des, Res. Vol 22 (2) (1982), p.7.

Google Scholar

[3] W. Kline, R.E. DeVor, I.A. Shareef: ASME Journal of Engineering for Industry Vol 104 (1982), p.272.

Google Scholar

[4] W. Kline, R.E. DeVor, I.A. Shareef: International Journal of Machine Tool Design and Research Vol 23 (1983), p.123.

Google Scholar

[5] I. Yellowley: Tool Design and Research Vol 25 (4) (1985), p.337.

Google Scholar

[6] J. Sutherland, J.R.E. Dever: Journal of Engineering for Industry Vol 108 (1986), p.269.

Google Scholar

[7] E. Budak, Y. Altintas, E.J.A. Armarego: ASME Journal of Manufacturing Science and Engineering Vol 118 (1996), p.216.

Google Scholar

[8] Li Zheng, Yun Shun Chiou, S.Y. Liang: Int, J. Mech. Sci. Vol 38(3) (1996), p.259.

Google Scholar

[9] Won-Soo Yun, Dong-Woo Cho: Int. J. Mach. Tools Manufact. Vol 41 (2001), p.463.

Google Scholar

[10] Y. Altintas, A. Spencer: Annals of CIRP Vol 40(1) (1991), p.31.

Google Scholar

[11] S. Jayaram, S.G. Kappor, R.E. DeVor: Int. J. Mach. Tools Manufact. Vol 41 (2001), p.265.

Google Scholar

[12] P.L.B. Oxley: Mechanics of Machining, Ellis Horwood, Chichester (1989).

Google Scholar

[13] H. Young, P. Mathew, P.L.B. Oxley: International Journal of Machine Tools Manufacture Vol 34(6) (1994), p.771.

Google Scholar

[14] X.P. Li, A.Y.C. Nee, Y.S. Wong, H.Q. Zheng: Journal of Materials Processing Technology Vol 89 (1999), p.266.

Google Scholar

[15] H.Q. Zheng, X.P. Li, Y.S. Wong, A.Y.C. Nee: International Journal of Machine Tools Manufacture Vol 39 (1999), p. (2003).

Google Scholar

[16] H. Z. Li, W. B. Zhang, X. P. Li: Int. J. Mech. Sci. Vol 43 (2000), p.1711.

Google Scholar

[17] A. Moufki, D. Dudzinski, A. Molinari, M. Rausch: Int. J. Mech. Science Vol 42 (2000), p.1205.

Google Scholar

[18] A. Moufki, A. Devillez, D. Dudzinski, A. Molinari: Int. J. Mach. Tools Manufact. Vol 44 (2004), p.971.

Google Scholar

[19] H. Z. Li, X. P. Li: Int. J. Mach. Tools Manufact. Vol 42 (2002), p.277.

Google Scholar

[20] R. H. Brown, J. A. Armarego: Int. J. Mach. Tool Des. Res. Vol 4 (1964), p.9.

Google Scholar

[21] K. A. Zvorykin: Proceedings. of the Kharko technological Institute, Ukraine (1893).

Google Scholar

[22] G. Yucesan, Y. Altintas: Int. J. Mach. Tools Manufact. Vol 34(4) (1994), p.473.

Google Scholar

[23] E. Budak: Int. J. Mach. Tools Manufact. Vol 46 (2006), p.1478.

Google Scholar

[24] H. W. Meyer, D. S. Kleponis: Int. J. Impact Engineering Vol 26 (2001), p.509.

Google Scholar