Three Generations of Solar Cells

Article Preview

Abstract:

In photovoltaic system the major challenge is the cost reduction of the solar cell module to compete with those of conventional energy sources. Evolution of solar photovoltaic comprises of several generations through the last sixty years. The first generation solar cells were based on single crystal silicon and bulk polycrystalline Si wafers. The single crystal silicon solar cell has high material cost and the fabrication also requires very high energy. The second generation solar cells were based on thin film fabrication technology. Due to low temperature manufacturing process and less material requirement, remarkable cost reduction was achieved in these solar cells. Among all the thin film technologies amorphous silicon thin film solar cell is in most advanced stage of development and is commercially available. However, an inherent problem of light induced degradation in amorphous silicon hinders the higher efficiency in this kind of cell. The third generation silicon solar cells are based on nano-crystalline and nano-porous materials. Hydrogenated nanocrystalline silicon (nc-Si:H) is becoming a promising material as an absorber layer of solar cell due to its high stability with high Voc. It is also suggested that the cause of high stability and less degradation of certain nc-Si:H films may be due to the improvement of medium range order (MRO) of the films. During the last ten years, organic, polymer, dye sensitized and perovskites materials are also attract much attention of the photovoltaic researchers as the low budget next generation PV material worldwide. Although most important challenge for those organic solar cells in practical applications is the stability issue. In this work nc-Si:H films are successfully deposited at a high deposition rate using a high pressure and a high power by Radio Frequency Plasma Enhanced Chemical Vapor Deposition (RF PECVD) technique. The transmission electron microscopy (TEM) studies show the formations of distinct nano-sized grains in the amorphous tissue with sharp crystalline orientations. Light induced degradation of photoconductivity of nc-Si:H materials have been studied. Single junction solar cells and solar module were successfully fabricated using nanocrystalline silicon as absorber layer. The optimum cell is 7.1 % efficient initially. Improvement in efficiency can be achieved by optimizing the doped layer/interface and using Ag back contact.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

113-130

Citation:

Online since:

July 2021

Authors:

Export:

Price:

* - Corresponding Author

[1] Zhao J, Wang A, Green MA, Ferrazza F, Novel 19.8% efficient honeycomb, textured multicrystalline and 24.4% monocrystalline silicon solar cells, Appl. Phys. Lett. 73 (1998) 1991–(1993).

DOI: 10.1063/1.122345

Google Scholar

[2] S. Hazra, A. R. Middya, C. Longeaud and S. Ray, Features of hydrogenated amorphous silicon films developed under an unexplored region of parameter space of radio-frequency plasma-enhanced chemical vapor deposition, Appl. Phys. Lett. 76 (2000) 2340-2342.

DOI: 10.1063/1.126339

Google Scholar

[3] J. Y. Ahn, K. H. Jun, K. S. Lim and M. Konagai, Stable protocrystalline silicon and unstable microcrystalline silicon at the onset of a microcrystalline regime, Appl. Phys. Lett. 82 (2003) 1718-1720.

DOI: 10.1063/1.1561161

Google Scholar

[4] M. Ito and M. Kondo, Systematic Study of Photodegradation of Tailored Nanostructure Si Solar Cells by Controlling Their Medium Range Order, Jpn. J. Appl. Phys. 45 (2006) L230-L232.

DOI: 10.1143/jjap.45.l230

Google Scholar

[5] P. M. Voyles, N. Zotov, S. M. Nakhmanson, D. A. Drabold, J. M. Gibson, M. M. J. Treacy, and P. Kebinski, Structure and physical properties of paracrystalline atomistic models of amorphous silicon, J. Appl. Phys. 90 (2001) 4437-4451.

DOI: 10.1063/1.1407319

Google Scholar

[6] P. M. Voyles, and J. R. Abelson, Medium-range order in amorphous silicon measured by fluctuation electron microscopy, Sol. Energy Mater. Sol. Cells 78 (2003) 85-113.

DOI: 10.1016/s0927-0248(02)00434-8

Google Scholar

[7] P. M. Voyles, J. E. Gerbi, M. M. J. Treacy, J. M. Gibson, and J. R. Abelson, Absence of an Abrupt Phase Change from Polycrystalline to Amorphous in Silicon with Deposition Temperature, Phys. Rev. Lett. 86 (2001) 5514-5517.

DOI: 10.1103/physrevlett.86.5514

Google Scholar

[8] W. D. Luedtke and U. Landman, Preparation, structure, dynamics, and energetics of amorphous silicon: A molecular-dynamics study, Phys. Rev. B 40 (1989) 1164-1174.

DOI: 10.1103/physrevb.40.1164

Google Scholar

[9] N. M. Amer and W. B. Jackson, Semiconductors and Semimetals, ed. A. C. Beer (Academic Press, Orlando) Vol. 21, Part B, Chap. 3 (1984).

Google Scholar

[10] G. Yue, B. Yan, G. Ganguly, J. Yang, S. Guha and C. W. Teplin, Material structure and metastability of hydrogenated nanocrystalline silicon solar cells, Appl. Phys. Lett. 88 (2006) 263507(1)-263507(3).

DOI: 10.1063/1.2216022

Google Scholar

[11] M. Ito, S. Shimizu, M. Kondo, A. Matsuda, Light-soaking stability of silicon thin film solar cells using alternately hydrogenated dilution method, J. Non-cryst. Solids 338 – 340 (2004) 698-701.

DOI: 10.1016/j.jnoncrysol.2004.03.061

Google Scholar

[12] S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, Md. K. Nazeeruddin & M. Grätzel, Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers, Nature Chemistry, 6 (2014) 242–247.

DOI: 10.1038/nchem.1861

Google Scholar

[13] T. Yan, W. Song, J. Huang, R. Peng, L. Huang and Z. Ge, 16.67% Rigid and 14.06% Flexible Organic Solar Cells Enabled by Ternary Heterojunction Strategy, Adv. Mater. 31 (2019) 1902210(1)-1902210(8).

DOI: 10.1002/adma.201902210

Google Scholar

[14] A. Kojima, K. Teshima, Y. Shirai, and T.Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. AM. CHEM. SOC. 131 (2009) 6050-6051.

DOI: 10.1021/ja809598r

Google Scholar

[15] Xiao‐Xin Gao, W. Luo, Y. Zhang, R. Hu, B. Zhang, A. Züttel, Y. Feng, M. K. Nazeeruddin, Stable and High‐Efficiency Methylammonium‐Free Perovskite Solar Cells, Advanced Materials, 32 (2020) 1905502(1)-1905502(9).

DOI: 10.1002/adma.201905502

Google Scholar

[16] W. Tress, M. Yavari, K. Domanski, P. K. Yadav, B. Niesen, J. Correa-Baena, A. Hagfeldt and M. Grätzel, Interpretation and Evolution of Open Circuit Voltage, Recombination, Ideality Factor and Subgap Defect States during Reversible Light-Soaking and Irreversible Degradation of Perovskite Solar Cells, Energy Environ. Sci. (2017) Accepted,.

DOI: 10.1039/c7ee02415k

Google Scholar

[17] R. E. I. Schropp, M. K. V. Veen, C. H. M. Van der Werf, D. L. Williamson, and A. H. Mahan, Protocrystalline Silicon at High Rate from Undiluted Silane, Mater. Res. Soc. Symp. Proc. 808, (2004) A8.4.1-A8.4.6.

DOI: 10.1557/proc-808-a8.4

Google Scholar

[18] M. Kondo, M. Fukawa, L. Guo, A. Matsuda, High rate growth of microcrystalline silicon at low temperatures, J. Non-Cryst. Solids, 266-269 (2000) 84-89.

DOI: 10.1016/s0022-3093(99)00744-9

Google Scholar

[19] S. Guha, J. Yang, D. L. Williamson, Y. Lubianiker, J. D. Cohen, and A. H. Mahan, Structural, defect, and device behavior of hydrogenated amorphous Si near and above the onset of microcrystallinity, Appl. Phys. Lett. 74 (1999) 1860-1862.

DOI: 10.1063/1.123693

Google Scholar

[20] M. Marinov and N. Zotov, Model investigation of the Raman spectra of amorphous silicon, Phys. Rev. B 55, (1997) 2938-2944.

DOI: 10.1103/physrevb.55.2938

Google Scholar

[21] D. Beeman, R. Tsu, and M. F. Thorpe, Structural information from the Raman spectrum of amorphous silicon, Phys. Rev. B 32 (1985) 874-878.

DOI: 10.1103/physrevb.32.874

Google Scholar

[22] P. Danesh, B. Pantchev, K. Antonova, E. Liarokapis, B. Schmidt, D. Grambole, and J. Baran, Hydrogen bonding and structural order in hydrogenated amorphous silicon prepared with hydrogen-diluted silane, J. Phys. D Appl. Phys. 37 (2004) 249-254.

DOI: 10.1088/0022-3727/37/2/013

Google Scholar

[23] S. Hazra, I. Sakata, M. Yamanaka and E. Suzuki, Evolution of an amorphous silicon network from silicon paracrystallites studied by spectroscopic ellipsometry, Phys. Rev. B. 69 (2004) 235204-1 – 235204-5.

DOI: 10.1103/physrevb.69.235204

Google Scholar

[24] A. Fontcuberta i Morral, H. Hofmeister, and P. Roca i Cabarrocas, Structure of plasma-deposited polymorphous silicon, J. Non-Cryst. Solids 299-302 (2002) 284-289.

DOI: 10.1016/s0022-3093(01)01007-9

Google Scholar

[25] R. Goswami and S. Ray, Study of Medium-Range Order and Defects in Hydrogenated Protocrystalline Silicon Films Deposited by Radio Frequency Plasma Enhanced Chemical Vapor Deposition, Jpn. J. Appl. Phys. 46, (2007) 7188-7193.

DOI: 10.1143/jjap.46.7188

Google Scholar

[26] C. Das and S. Ray, Power density in RF PECVD: a factor for deposition of amorphous silicon thin films and successive solid phase crystallization, J. Phys. D. 35 (2002) 2211-2216.

DOI: 10.1088/0022-3727/35/17/319

Google Scholar