Thermal Transport Properties of Ca3Co4O9 with Mg Substitution

Article Preview

Abstract:

Polycrystalline Ca3-xMgxCo4O9(x=0-0.3)ceramics were prepared by the sol–gel method combined with the ordinary pressing sintering and the thermal conductivities were measured from room temperature to 673 K. The influence of Mg2+ substitution for Ca2+ on the thermal conductivities of Ca3Co4O9 ceramics was investigated systematically. The influence of Mg doping on the thermal conductivities is mainly embodied in the lattice thermal conductivities, which shows a significant decrease with the increase of the dopant content for the samples with x ≤ 0.2, while the carrier thermal conductivity had no obvious change with Mg doping increasing. These results indicated that the thermal conductivities of the material could be reduced remarkably with the substitution of Mg from 1.427 W/m·K to 0.731 W/m·K at 573 K with x = 0.2.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

959-962

Citation:

Online since:

July 2011

Export:

Price:

[1] I. Terasakii, Y. Saasgo, K. Uchinokura: Phys. Rev. B Vol. 56 (1997), p.12685.

Google Scholar

[2] A.C. Masset, C. Michel, A. Maignan et al.: Phys. Rev. B Vol. 62 (2000), p.166.

Google Scholar

[3] H.W. Eng, P. Limelette, W. Prellier et al.: Phys. Rev. B Vol. 73 (2006), p.033403.

Google Scholar

[4] T.A. Tyson, Z. Chen, Q. Jie et al.: Phys. Rev. B Vol. 79 (2009), p.024109.

Google Scholar

[5] R. Moubah, S. Colis, C. Ulhaq-Bouillet et al.: Appl. Phys. Lett. Vol. 96 (2010), p.041902.

DOI: 10.1063/1.3292590

Google Scholar

[6] Y. Wang, L.X. Xu, Y. Sui et al.: Appl. Phys. Lett. Vol. 97 (2010), p.062114.

Google Scholar

[7] K. Iwasaki, H. Yamane, S. Kubota et al.: J. Alloy. Compd. Vol. 358 (2003), p.210.

Google Scholar

[8] N. Mohapatra, K.K. Iyer, S.D. Das et al.: Phys. Rev. B Vol. 79 (2009), p.140409.

Google Scholar

[9] R. Moubah, S. Colis, G. Schmerber et al.: Appl. Phys. Lett. Vol. 94 (2009), p.141907.

Google Scholar

[10] R. Funahashi, I. Matsubara, and S. Sodeoka: Appl. Phys. Lett. Vol. 76 (2000), p.2385.

Google Scholar

[11] R. Funahashi and I. Matsubara: Appl. Phys. Lett. Vol. 79 (2001), p.362.

Google Scholar

[12] X.B. Zhu, D.Q. Shi, S.X. Dou et al.: Acta Mater. Vol. 58 (2010), p.4281.

Google Scholar

[13] H.Q. Liu, X.B. Zhao, T.J. Zhu et al.: Curr. Appl. Phys. Vol. 9 (2009), p.409.

Google Scholar

[14] H.B. Yahia, F. Mauvy, and J.C. Grenier: J. Solid State Chem. Vol. 183 (2010), p.527.

Google Scholar

[15] J. Xu, C.X. Wei, and K. Jia: J. Alloys Compd. Vol. 227 (2010), p.227.

Google Scholar

[16] C.J. Liu, L.C. Huang, and J.S. Wang: Appl. Phys. Lett. Vol. 89 (2006), p.204102.

Google Scholar

[17] X.L. Qi, L.K. Zeng, T. Liu et al.: J. Chin. Ceram. Soc. Vol. 37 (2009), p.1022.

Google Scholar

[18] R. Moubah, S. Colis, C. Leuvrey et al.: Thin Solid Films Vol. 16 (2010), p.4546.

Google Scholar

[19] M. Mikami, N. Ando, and R. Funahashi: J. Solid State Chem. Vol. 178 (2005), p.2186.

Google Scholar

[20] Y. Wang, Y. Sui, J.G. Cheng et al.: J. Alloy. Comd. Vol. 477 (2009), p.817.

Google Scholar

[21] Zhixue Qu, Chunlei Wan, and Pan Wei: Vol. 36 (2007), p.665, in Chinese.

Google Scholar