Electrical and Magnetic Properties of CuEu2W2O10 and Cu3Eu2W4O18

Article Preview

Abstract:

Magnetic susceptibility measurements showed both a weak response to magnetic field and a lack of the Curie-Weiss region for CuEu2W2O10 and Cu3Eu2W4O18 tungstates characteristic for the multiplet widths comparable to thermal energy. Magnetization measurements displayed the linear temperature dependence with the lower magnetic moment for Cu3Eu2W4O18 in comparison with CuEu2W2O10, indicating that the effect of the electric charges associated with the surrounding ligands can change the multiplet width of individual states. It is affecting the electrical properties of examined tungstates which reveal the insulating state and low relative permittivity εr ~ 29 in case of CuEu2W2O10 and the thermally activated p-type electrical conduction for Cu3Eu2W4O18 with the activation energy of 1.11 eV and the large value of εr ~ 217 above the room temperature.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 194)

Pages:

104-107

Citation:

Online since:

November 2012

Export:

Price:

[1] Q. Meng, R. Hua, B. Chen, Y. Tian, S. Lu, L. Sun, Study on luminescent properties of Eu3+ doped Gd2WO6, Gd2W2O9 and Gd2(WO4)3 nanophosphors prepared by co-precipitation, J. Nanosci. Nanotechnol. 11 (2011) 182-188.

DOI: 10.1016/s1002-0721(10)60566-2

Google Scholar

[2] Q. Zhang, Q. Meng, Y. Tian, X. Feng, J. Sun, S. Lu, Luminescent properties of Eu3+ doped Gd2WO6 and Gd2(WO4)3 nanophosphors prepared via co-precipitation method, J. Rare Earths 29 (2011) 815-821.

DOI: 10.1016/s1002-0721(10)60566-2

Google Scholar

[3] P. Urbanowicz, E. Tomaszewicz, T. Groń, H. Duda, A.W. Pacyna, T. Mydlarz, Magnetic properties of R2WO6 (where R = Nd, Sm, Eu, Gd, Dy and Ho), Physica B 404 (2009) 2213-2217.

DOI: 10.1016/j.physb.2009.04.016

Google Scholar

[4] A.W. Sleight, Accurate cell dimensions for ABO4 molybdates and tungstates, Acta Crystallogr. B 26 (1970) 2899-2902.

DOI: 10.1107/s0567740872007186

Google Scholar

[5] L. Kihlborg, L. Gebert, CuWO4, a distorted wolframite-type structure, Acta Crystallogr. B 26 (1970) 1020-1026.

DOI: 10.1107/s0567740870003515

Google Scholar

[6] P.F. Schofield, K.S. Knight, S.A.T. Redfern, G. Cressey, Distortion characteristics across the structural phase transition in (Cu1-xZnx)WO4, Acta Crystallogr. B 53 (1997) 102-112.

DOI: 10.1107/s0108768196010403

Google Scholar

[7] L. Chi-Lin, F. Zheng-Wen, Nano-sized copper tungstate thin films as positive electrodes for rechargeable Li batteries, Electrochim. Acta, 53 (2008) 4293-4301.

DOI: 10.1016/j.electacta.2008.01.014

Google Scholar

[8] E. Tomaszewicz, J. Typek, S.M. Kaczmarek, Synthesis, characterization and thermal behaviour of new copper and rare-earth metal tungstates, J. Therm. Anal. Calorim. 98 (2009) 409-421.

DOI: 10.1007/s10973-009-0295-x

Google Scholar

[9] E. Tomaszewicz, A. Worsztynowicz, S.M. Kaczmarek, Subsolidus phase relations in CuWO4-Gd2WO6 system, Solid State Sci. 9 (2007) 43-51.

DOI: 10.1016/j.solidstatesciences.2006.11.010

Google Scholar

[10] I. Okońska-Kozłowska, H.D. Lutz, T. Groń, J. Krok, T. Mydlarz, Darstellung, elektrische und magnetische Eingenschaften von-Zn1-xGa0.667xCr2Se4-Spinell-Einkristallen, Mat. Res. Bull. 19 (1984) 1-5.

DOI: 10.1016/0025-5408(84)90002-3

Google Scholar

[11] R.T. Littleton IV, J. Jeffries, M.A. Kaeser, M. Long, and T.M. Tritt, Proceedings of 1998 Materials Research Society, Vol. 545 (1998) p.137.

Google Scholar

[12] A.H. Morrish, The Physical Principles of Magnetism, Wiley, New York, 1965.

Google Scholar

[13] C. Kittel, Introduction to Solid State Physics, John Wiley & Sons, Inc., New York, 1960.

Google Scholar

[14] A. Earnshaw, Introduction to Magnetochemistry, Academic Press, London, 1968.

Google Scholar