Carbon Nanotube Bolometer: Transport Properties and Noise Characteristics

Article Preview

Abstract:

The temperature dependent resistance and the noise characteristics of an individual multi-wall carbon nanotube (CNT) decorated with a finite number of magnetic nanocubes are investigated. We show that CNT is a highly sensitive bolometer and can enable measurements of magnetic resonance in a single nanoparticle.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 190)

Pages:

510-513

Citation:

Online since:

June 2012

Export:

Price:

[1] J. -P. Cleuziou, W. Wernsdorfer, V. Bouchiat, T. Ondarçuhu, M. Monthioux, Carbon nanotube superconducting quantum interference device, Nature nanotechnol. 1 (2006) 53-59.

DOI: 10.1038/nnano.2006.54

Google Scholar

[2] L. Hao, D. Cox, P. See, J. Gallop, O. Kazakova, Magnetic nanoparticle detection using nano-SQUID sensors, J. Phys. D: Appl. Phys. 43 (2010) 474004-6.

DOI: 10.1088/0022-3727/43/47/474004

Google Scholar

[3] F. Kronast, N. Friedenberger, K. Ollefs, S. Gliga, L. Tati-Bismaths, R. Thies, A. Ney, R. Weber, C. Hassel, F. M. Römer, A. V. Trunova, C. Wirtz, R. Hertel, H. A. Dürr, M. Farle, Element-Specific Magnetic Hysteresis of Individual 18 nm Fe Nanocubes Nano Lett. 11 (2011).

DOI: 10.1021/nl200242c

Google Scholar

[4] R. Meckenstock. Microwave spectroscopy based on scanning thermal microscopy: resolution in the nanometer range, Rev. Sci. Instrum. 79 (2008), 041101-29.

DOI: 10.1063/1.2908445

Google Scholar

[5] A. Banholzer, R. Narkowicz, C. Hassel, R. Meckenstock, S. Stienen, O. Posth, D. Suter, M. Farle, J. Lindner, Visualization of spin dynamics in single nanosized magnetic elements, Nanotechnology 22 (2011) 295713-5.

DOI: 10.1088/0957-4484/22/29/295713

Google Scholar

[6] J. Schmidt, I. Solomon, High sensitivity magnetic resonance by bolometer detection, J. Appl. Phys. 37 (1966) 3719-3724.

DOI: 10.1063/1.1707912

Google Scholar

[7] I. Rod, O. Kazakova, D.C. Cox, M. Spasova, M. Farle, The route to single magnetic particle detection: a carbon nanotube decorated with a finite number of nanocubes, Nanotechnology 20 (2009) 335301-5.

DOI: 10.1088/0957-4484/20/33/335301

Google Scholar

[8] A. Shavel, B. Rodríguez-Gonzáles, M. Spasova, M. Farle, L.M. Liz-Marzán, Synthesis and characterization of iron/iron oxide core/shell nanocubes, Adv. Funct. Mater. 17 (2007) 3870-3876.

DOI: 10.1002/adfm.200700494

Google Scholar

[9] M. P. Anantram, F. Léonard, Physics of carbon nanotube electronic devices, Rep. Prog. Phys. 69 (2006) 507-561.

DOI: 10.1088/0034-4885/69/3/r01

Google Scholar

[10] H. Ouacha, M. Willander, H.Y. Yu, Y.W. Park, M.S. Kabir, S.H. Magnus Persson, L.B. Kish, A. Ouacha, Noise properties of an individual and two crossing multiwalled carbon nanotubes, Appl. Phys. Lett. 80 (2002) 1055-1057.

DOI: 10.1063/1.1447313

Google Scholar

[11] C. Masarapu, L. L. Henry, B. Wei, Specific heat of aligned multiwalled carbon nanotubes, Nanotechnol. 16 (2005) 1490-1494.

DOI: 10.1088/0957-4484/16/9/013

Google Scholar

[12] P. Kim, L. Shi, A. Majumdar, P. L. McEuen, Thermal transport measurements of individual multiwalled nanotubes, Phys. Rev. Lett. 87 (2001) 215502-4.

DOI: 10.1103/physrevlett.87.215502

Google Scholar

[13] D. Walton, H. Boehnel, D. J. Dunlop, Response of magnetic nanoparticles to microwaves, Appl. Phys. Lett. 85 (2004) 5367-5369.

DOI: 10.1063/1.1829771

Google Scholar