Structure, Chemical Stability and Magnetic Properties of Lanthanum Silicate Oxide Apatite Synthesized by Hydrothermal Method

Article Preview

Abstract:

Lanthanum silicate oxides (LSOs) with modified mass target varied from 1 to 10 g were successfully synthesized using the hydrothermal method in a 100 mL autoclave. This research is aimed to study the structure, chemical stability, and magnetic properties of the LSO. From x-ray diffraction (XRD) patterns, the main peaks of LSO were observed in the sample with 1, 3, 5, and 7 g mass target while the LSO pattern did not match in the sample with 10 g mass target. The samples with low mass target resulted in better crystallinity. The chemical stabilities of the sample were then tested on LSCF perovskite cathode and showed good chemical stability with no reactivity on the cathode. The magnetic properties of the sample with 5 g mass target was measured at 100 to 300 K using a superconducting quantum interference device (SQUID). The trace of Neel temperature, TN, in LSO was not signified at this range of temperature in which referring a difference of LSO magnetic properties to the SOFC perovskite cathode. The TN of LSO was predicted below 100 K. This behavior suggested that LSO has good magnetic compatibility with the perovskite cathode.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

415-421

Citation:

Online since:

August 2019

Export:

Price:

* - Corresponding Author

[1] X.G. Cao, & S.P. Jiang, Identification of oxygen reduction processes at (La,Sr)MnO3 electrode/La9.5Si6O26.25 apatite electrolyte interface of solid oxide fuel cells, Int. J. Hydrog. Energy. 38(5) (2013) 2421–2431.

DOI: 10.1016/j.ijhydene.2012.12.043

Google Scholar

[2] X.G. Cao. & S.P. Jiang, Oxygen reduction reaction at (La,Sr)(Co,Fe)O3-d electrode/La9.5Si6O26.25 apatite electrolyte interface of solid oxide fuel cells, Int. J. Hydrog. Energy. 41(2) (2016) 1203–1212.

DOI: 10.1016/j.ijhydene.2015.11.135

Google Scholar

[3] D. Marrero-López, M.C. Martín-Sedeño, J. Peña-Martínez, J.C. Ruiz-Morales, P. Núñez, M.A.G. Aranda, & J.R. Ramos-Barrado, Evaluation of apatite silicates as solid oxide fuel cell electrolytes. J. Power Sources. 195(9) (2010) 2496–2506.

DOI: 10.1016/j.jpowsour.2009.11.068

Google Scholar

[4] Y. Higuchi, M. Sugawara, K. Onishi, M. Sakamoto, & S. Nakayama, Oxide Ionic Conductivities of Apatite-Type Lanthanum Silicates and Germanates and Their Possibilities as An Electrolyte of Lower Temperature Operating SOFC. Ceram. Int. 36(3) (2010) 955–959.

DOI: 10.1016/j.ceramint.2009.10.022

Google Scholar

[5] A. Nakajo, F. Mueller, J. Brouwer, J. Van Herle, & D. Favrat, Mechanical Reliability and Durability of SOFC Stacks. Part II: Modelling of Mechanical Failures During Ageing and Cycling, Int. J. Hydrog. Energy. 37(11) (2012) 9269–9286.

DOI: 10.1016/j.ijhydene.2012.03.023

Google Scholar

[6] Z. Chen, Mechanical Properties of La0.6Sr0.4Co0.2Fe0.8O3 Fuel Cell Electrodes, Imperial College London, London, (2014).

Google Scholar

[7] L. Mogni, F. Prado, C. Jiménez, & A. Caneiro, Oxygen order – disorder phase transition in layered GdBaCo2O5+δ perovskite : thermodynamic and transport properties, Solid State Ion. 240 (2013) 19–28.

DOI: 10.1016/j.ssi.2013.03.021

Google Scholar

[8] J.H. Kim, & A. Manthiram, Layered LnBaCo2O 5+δ perovskite cathodes for solid oxide fuel cells: an overview and perspective. J. Mater. Chem. A. 3(48) (2015) 24195–24210.

DOI: 10.1039/c5ta06212h

Google Scholar

[9] G. Srinivasan, & E.T. Rasmussen, Electrical transport and magnetoresistance in thick films of lanthanum calcium manganite prepared by tape casting, Appl. Phys. Letters. 80(3) (2002) 464–466.

DOI: 10.1063/1.1436283

Google Scholar

[10] N. Thenmozhi, & R. Saravanan, High-temperature synthesis and electronic bonding analysis of Ca-doped LaMnO3 rare-earth manganites. Rare Met. (2017).

DOI: 10.1007/s12598-017-0964-z

Google Scholar

[11] A.M. Latshaw, K.D. Hughey, M.D. Smith, J. Yeon, & H. Loye, Photoluminescent and Magnetic Properties of Lanthanide Containing Apatites: Na. Inorg. Chem. 54 (2015) 876–884.

Google Scholar

[12] A. Chesnaud, G. Dezanneau, C. Estournès, C. Bogicevic, F. Karolak, S. Geiger, & G. Geneste, Influence of synthesis route and composition on electrical properties of La9.33+xSi6O26+3x/2 oxy-apatite compounds, Solid State Ion. 179(33–34) (2008)1929–(1939).

DOI: 10.1016/j.ssi.2008.04.035

Google Scholar

[13] A.M. Misso, D.R. Elias, F. dos Santos, & C. Yamagata, Low temperature synthesis of lanthanum silicate apatite type by modified sol gel process, Adv. Mat. Res. 975 (2014) 143–148.

DOI: 10.4028/www.scientific.net/amr.975.143

Google Scholar

[14] A.R. Noviyanti, B. Prijamboedi, I.N. Marsih, & I. Ismunandar, Hydrothermal preparation of apatite-type phases La9.33Si6O26 and La9M1Si6O26.5 (M = Ca, Sr, Ba). ITB J. Sci. 44(2) (2012)193–203.

DOI: 10.5614/itbj.sci.2012.44.2.8

Google Scholar

[15] A.R. Noviyanti, J. Juliandri, S.U. Agustina, & Y.T. Malik, Influence of synthesis time on lanthanum silicate apatite (La9.33Si6O26) properties, Res. J. Chem. Environ. 22(2) (2018) 120–123.

Google Scholar

[16] Y.T. Malik, A.R. Noviyanti, & D.G. Syarif, Lowered Sintering Temperature on Synthesis of La9.33Si6O26 (LSO)–La0.8Sr0.2Ga0.8Mg0.2O2.55 (LSGM) Electrolyte Composite and the Electrical Performance of La0.7Ca0.3MnO3 (LCM) Cathode, J. Sci. and Appl. Chem. 21(4) (2018) 205–210.

DOI: 10.14710/jksa.21.4.205-210

Google Scholar

[17] K. Fukuda, T. Asaka, & T. Uchida. Thermal expansion of lanthanum silicate oxyapatite (La9.33+2x(SiO4)6O2+3x), lanthanum oxyorthosilicate (La2SiO5) and lanthanum sorosilicate (La2Si2O7), J. Solid State Chem. 194 (2012) 157–161.

DOI: 10.1016/j.jssc.2012.04.043

Google Scholar

[18] A. Pal, S. Paul, A.R. Choudhury, V.K. Balla, M. Das, & A. Sinha, Synthesis of hydroxyapatite from Lates calcarifer fish bone for biomedical applications. Mater. Lett. 203 (2017) 89–92.

DOI: 10.1016/j.matlet.2017.05.103

Google Scholar

[19] M. Tadic, D. Nikolic, M. Panjan, & G.R. Blake, Magnetic properties of NiO (nickel oxide) nanoparticles: blocking temperature and Neel temperature. J. Alloy Comp. 647 (2015) 1061–1068.

DOI: 10.1016/j.jallcom.2015.06.027

Google Scholar

[20] K. Huang & J.B. Goodenough, Solid Oxide Fuel Cell Technology: Principles, Performance and Operations, Woodhead Publishing Limited, Oxford, (2009).

Google Scholar