Tensile and Fatigue Properties of Miniature Size Specimens of Sn-5Sb Lead-Free Solder

Article Preview

Abstract:

Tensile and low cycle fatigue properties of Sn-5Sb (mass%) solder were investigated with miniature size tensile specimens. The effect of temperature and strain rate on tensile properties and the effect of temperature on low cycle fatigue properties were examined. Tensile strength increases with increasing strain rate regardless of temperature investigated. For elongation, the effect of temperature on it is negligible although it slightly increases with increasing strain rate. The low cycle fatigue life of Sn-5Sb obeys by the Manson-Coffin’s equation. The effect of temperature on the fatigue life is negligible in the temperature range from 25 oC to 150 oC. In the low cycle fatigue test with a high total strain range of 4%, cracking at phase boundary mainly occurs regardless of temperature investigated. In the case of a low total strain range of 0.4%, ductile fracture mainly occurs, and cracking at phase boundary with generation of grooves also occurs at high temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2377-2382

Citation:

Online since:

November 2016

Export:

Price:

[1] M. Nahavandi, M. A. Azmah Hanim, Z. N. Ismarrubie, A. Hajalilou, R. Rohaizuan, M. Z. Shahrul Fadzli, Effects of silver and antimony content in lead-free high-temperature solders of Bi-Ag and Bi-Sb on copper substrate, Journal of Electronic Materials 43 (2014).

DOI: 10.1007/s11664-013-2873-8

Google Scholar

[2] R. I. Rodriguez, R. Puerto, D. Ibitayo, P. O. Quintero, Thermal stability characterization of the Au-Sn bonding for high-temperature applications, IEEE Trans-CPMT-A 3 (2013) 549-557.

DOI: 10.1109/tcpmt.2013.2243205

Google Scholar

[3] M. A. A. M. Salleh, A. M. M. A. Bakri, M. H. Z. Hazizi, F. Somidin, N. F. M. Alui, Z. A. Ahmad, Mechanical properties of Sn-0. 7Cu/Si3N4 lead-free composite solder, Materials Science and Engineering A - Structural Materials Properties Microstructure and Processing 3 (2012).

DOI: 10.1016/j.msea.2012.07.039

Google Scholar

[4] A. A. El-Daly, A. Fawzy, A. Z. Mohamad, A. M. El-Taher, Microstructural evolution and tensile properties of Sn-5Sb solder alloy containing small amount of Ag and Cu, Journal of Alloys and Compounds 509 (2011) 4574-4582.

DOI: 10.1016/j.jallcom.2011.01.109

Google Scholar

[5] V. Chidambaram, J. Hattel, J. Hald, High-temperature lead-free solder alternatives, Microelectronic Engineering 88 (2011) 981-989.

DOI: 10.1016/j.mee.2010.12.072

Google Scholar

[6] A. A. El-Daly, Y. Swilem, A. E. Hammad, Creep properties of Sn-Sb based lead-free solder alloys, Journal of Alloys and Compounds 471 (2009) 98-104.

DOI: 10.1016/j.jallcom.2008.03.097

Google Scholar

[7] Y. Kariya, T. Niini, T. Suga, M. Otsuka, Isothermal fatigue properties of Sn-Ag-Cu alloy evaluated by micro size specimen, Materials Transactions 46 (2005) 2309-2315.

DOI: 10.2320/matertrans.46.2309

Google Scholar

[8] I. Shohji, T. Osawa, T. Matsuki, Y. Kariya, K. Yasuda, T. Takemoto, Effect of specimen size and aging on tensile properties of Sn-Ag-Cu lead-free solders, Materials Transactions 49 (2008) 1175-1179.

DOI: 10.2320/matertrans.mbw200705

Google Scholar

[9] I. Shohji, Y. Toyama, Effect of strain rate on tensile properties of miniature size specimens of several lead-free alloys, Materials Science Forum 783-786 (2014) 2810-2815.

DOI: 10.4028/www.scientific.net/msf.783-786.2810

Google Scholar

[10] T. B. Massalski, Binary alloy phase diagrams, ASM International, New York, 1990, p.3306.

Google Scholar