Sintering Mechanisms of Functionally Graded Cemented Carbides

Article Preview

Abstract:

Functionally graded cemented carbides of two types are described. The functionally graded cemented carbides of the first type are of the WC-Co system and comprise gradients of WC grain sizes and/or Co contents. The functionally graded cemented carbides of the second type are Ti-and N-containing cemented carbides comprising gradients of nitrogen, cobalt and Ti-based cubic carbides. Special features and applications of the functionally graded cemented carbides of the both types are presented. Sintering mechanisms explaining the gradient formation in the functionally graded cemented carbides of the both types are summarized.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

116-198

Citation:

Online since:

January 2016

Export:

Price:

* - Corresponding Author

[1] V.I. Tretyakov, Metal-ceramic cemented carbides, Metallurgizdat, Moscow, 1962 (in Russian).

Google Scholar

[2] V.I. Tretyakov, Bases of materials science and technology of fabrication of sintered cemented carbides, Metallurgiya, Moscow, 1975 (in Rusian).

Google Scholar

[3] U. Fischer, E. Hartzell, J. Akerman, US patent 4, 743, 515 (1988).

Google Scholar

[4] B. Aronsson, T. Hartzell, J. Aakerman, Structure and properties of dual carbide for rock drilling. In Proceedings of Adv. Hard Mater. Prod. Conf., 1988, Shrewsbury, UK: MPR Publ. Serv. Ltd., p.19/1 – 19/6.

Google Scholar

[5] H. Suzuki, K. Hayashi, Y. Taniguchi, The beta-free layer near the surface of vacuum-sintered tungsten carbide-beta-Co alloys containing nitrogen, Trans. Jpn. Inst. Met.; 22(11)(1981)758-764.

DOI: 10.2320/matertrans1960.22.758

Google Scholar

[6] M. Schwarzkopf, H.E. Exner, H.F. Fischmeister, W. Schintlmeister, Kinetics of compositional modification of (W, Ti)C-WC-Co alloy surfaces. Mater. Sci. Eng. A; A105/106(1988)225-231.

DOI: 10.1016/0025-5416(88)90500-9

Google Scholar

[7] K. Tsuda, A. Ikegaya, K. Isobe, M. Kitagawa, T. Nomura, Development of functionally graded sintered hard materials. Powder Met., 39(4)(1996)296-300.

DOI: 10.1179/pom.1996.39.4.296

Google Scholar

[8] W. Lengauer, K. Dreyer, Functionally graded hardmetals, J. Alloys Compd., 338(1-2) (2002)194-212.

DOI: 10.1016/s0925-8388(02)00232-3

Google Scholar

[9] W. Lengauer, K. Dreyer, Tailoring hardness and toughness gradients in functional gradient hardmetals (FGHMs), Int. J. Refractory Met. Hard Mater., 24(2006)155-161.

DOI: 10.1016/j.ijrmhm.2005.03.008

Google Scholar

[10] C. Colin, L. Durant, et al., Processing of functional-gradient WC-Co cermets by powder metallurgy, Int. J. Refractory Met. Hard Mater., 12(1993-1994)145-152.

DOI: 10.1016/0263-4368(93)90064-m

Google Scholar

[11] S. Rassbach, S. Moseley, W. Böhlke, Metallurgical fundamentals of macroscopic gradient hardmetals. In Proc. 17th Int. Plansee Seminar, L. Sigl, P. Rödhammer, H. Wildner (Eds. ), V. 2, Reutte, 2009, Austria: Plansee Group, 2009, p.48/1 – 48/13.

Google Scholar

[12] I. Konyashin, B. Straumal, S. Hlawatschek, B. Ries, et al. Functionally Graded Cemented Carbides Obtained on the Basis of Capillarity Phenomena, Part II. Co drifts at various WC grain sizes and carbon contents, submitted to J. Mater. Sci., (2015).

DOI: 10.1016/j.matlet.2015.12.038

Google Scholar

[13] M. Greenfield, US Patent 5, 623, 723 (1997).

Google Scholar

[14] J. Glätzle, R. Kösters, W. Glätzle, US Patent Application US2004/0009088 (2004).

Google Scholar

[15] M. Collin, S. Norgren, Hardness gradients in WC-Co created by local addition of Cr3C2. In Proc. 16th Int. Plansee Seminar,G. Kneringer, P. Rödhammer, H. Wildner (Eds. ), 2005, V. 2., Reutte, Austria: Plansee Group, p.227 – 241.

Google Scholar

[16] I. Konyashin, S. Hlawatschek, B. Ries, F. Lachmann, A. Sologubenko, T. Weirich. A New Approach to Fabrication of Gradient WC-Co Hardmetals, Int. J. Refractory Met. Hard Mater., 28 (2010) 228–237.

DOI: 10.1016/j.ijrmhm.2009.10.003

Google Scholar

[17] I. Konyashin, S. Hlawatschek , B. Ries, F. Lachmann, T. Weirich, F. Dorn, A. Sologubenko. On the Mechanism of WC Coarsening in WC-Co Hardmetals with Various Carbon Contents. Int. J. Refractory Met. Hard Mat., 27 (2009) 234–243.

DOI: 10.1016/j.ijrmhm.2008.09.001

Google Scholar

[18] I. Konyashin, S. Hlawatschek, B. Ries, F. Lachmann. Gradient WC-Co Structures Obtained by Regulated WC Re-Crystallization without Using Grain Growth Inhibitors. In Proc. 17th Int. Plansee Seminar, L. Sigl, P. Rödhammer, H. Wildner (Eds. ), 2009, V. 2,. Reutte, Austria: Plansee Group, p.6.

Google Scholar

[19] H. Exner, H. Fischmeister, Gefügevergröberung in zweiphasigen Legierungen, Z. Metallkunde, 5(1966)187.

DOI: 10.1515/ijmr-1966-570304

Google Scholar

[20] L. Skolnick, The kinetics of solution of tungsten carbide in molten cobalt, in: Kingery N, (Ed. ), Kinetics of High Temperature Processes, Technology Press MIT, 1959, 92.

DOI: 10.7551/mitpress/4061.003.0018

Google Scholar

[21] H. Grewe, Einige Überlegungen zum Wachstum der Gefügekomponenten in einer Hartmetall-Legierung mit 11% Co, DEW-Technische Berichte, 13 (1973) 35.

Google Scholar

[22] C. Buhsmer, P. Crayton, Carbon self-diffusion in tungsten carbide. J Mater Sci, 6(1971)981.

DOI: 10.1007/bf00549949

Google Scholar

[23] I. Konyashin, Cemented carbides for mining construction and wear parts, in V.K. Sarin (Editor-in-Chief) and D. Mari & L. Llanes (Vol. Eds. ), Comprehensive Hard Materials, Elsevier Ltd, 2014. p.425–451.

DOI: 10.1016/b978-0-08-096527-7.00015-5

Google Scholar

[24] I. Konyashin, B. Ries, F. Lachmann, A. T. Fry, A novel sintering technique for fabrication of functionally gradient WC–Co cemented carbides, J. Mater. Sci., 47 (2012), 7072-7084.

DOI: 10.1007/s10853-012-6516-x

Google Scholar

[25] L. Zhang, Y. Wang, X. Yu et al. Crack propagation characteristics and toughness of functionally graded WC-Co cemented carbides. Int. J. Refract. Met. Hard Mater. 26(2008)295–300.

DOI: 10.1016/j.ijrmhm.2007.07.002

Google Scholar

[26] Y. Liu Y, H. Wang, Z. Long, P. Liaw, J. Yang, B. Huang, Microstructural evolution and mechanical behaviors of graded cemented carbides. Mater. Sci. Eng. A, 426(2006) 346-354.

DOI: 10.1016/j.msea.2006.04.018

Google Scholar

[27] Y. Liu, H. Wang, J. Yang, et al. Formation mechanism of cobalt-gradient structure in WC-Co hard alloy. J. Mater. Sci. 39, (2004)4397-4399.

DOI: 10.1023/b:jmsc.0000033437.75050.5d

Google Scholar

[28] O. Eso, Z. Fang, A. Griffo, Liquid phase sintering of functionally graded WC-Co composites. Int. J. Refractory Met. Hard Mater., 23(2005)233-241.

DOI: 10.1016/j.ijrmhm.2005.04.017

Google Scholar

[29] O. Eso, P. Fan, Z. Fang, A kinetic model for cobalt gradient formation during liquid phase sintering of functionally graded WC-Co. Int. J. Refractory Met. Hard Mater. 26(2008)91-97.

DOI: 10.1016/j.ijrmhm.2007.02.004

Google Scholar

[30] O. Eso, P. Fan, Z. Fang, Kinetics of cobalt gradient formation during the liquid phase sintering of functionally graded WC-Co. Int. J. Refractory Met. Hard Mater., 25(2007)286-292.

DOI: 10.1016/j.ijrmhm.2006.07.002

Google Scholar

[31] A. Maximenko, G. Roebben, J. Van Der Biest, Modelling of metal-binder migration during liquid-phase sintering of graded cemented carbides, Mater. Process Technol., 160(2005)261-369.

DOI: 10.1016/j.jmatprotec.2004.06.023

Google Scholar

[32] A. F Lisovsky, Some problems on the technical use of the phenomenon of metal melts imbibition of sintered composites, Powder Met. Int., 19(1987)18-21.

Google Scholar

[33] D. V. Suetin, I. R Shein, A. L. Ivanovskii, Structural, electronic and magnetic properties of η carbides (Fe3W3C, Fe6W6C, Co3W3C and Co6W6C) from first principles calculations, Physica B, 404(2009)3544-3549.

DOI: 10.1016/j.physb.2009.05.051

Google Scholar

[34] Z. Fang, O. Eso, Liquid phase sintering of functionally graded WC-Co composites. Scripta Mater., 52(2005)785-791.

DOI: 10.1016/j.scriptamat.2004.12.008

Google Scholar

[35] I. Konyashin, S. Hlawatschek, B. Ries. Engineered Surfaces on Cemented Carbides Obtained by Tailored Sintering Techniques. Surf. Coat. Technol., 258(2014)300-309.

DOI: 10.1016/j.surfcoat.2014.09.009

Google Scholar

[36] I. Konyashin, B. Ries, F. Lachmann, A. T. Fry. Gradient Hardmetals: Theory and Practice. International Journal of Refractory Metals and Hard Materials, 36(2013)10-21.

DOI: 10.1016/j.ijrmhm.2011.12.010

Google Scholar

[37] I. Konyashin S. Hlawatschek1, B. Ries , B. Baretzky, A. Mazilkin, Functionally Graded Cemented Carbides Obtained on the Basis of Capillarity Phenomena. Part II. Co Drifts at Various WC Grain Sizes and Carbon Contents, submitted to J. Mater. Sci. (2015).

DOI: 10.1016/j.matlet.2015.12.038

Google Scholar

[38] I. Konyashin, B. Ries, F. Lachmann A hard-metal body. PCT Patent Application WO2010/097784A1, (2010).

Google Scholar

[39] I. Konyashin, B. Ries, F. Lachmann, PCT Patent Application WO2010/103418A1 (2010).

Google Scholar

[40] J. Guo, F. Wang et al., A novel approach for manufacturing functionally graded cemented tungsten carbide composites, Advanced in Powder Metallurgy & Particulate Materials, 2010, Metal Powder Industries Federation, Princeton, NJ, USA, 8/29-8/39.

Google Scholar

[41] J. Guo, P. Fan, Z Fang, A new method for making graded WC-Co by carburizing heat treatment of fully densified WC-Co. Proc. 17th Int. Plansee Seminar, L. Sigl, P. Rödhammer, H. Wildner (eds. ), Reutte, 2009, V. 2, p.50/1 – 50/6.

Google Scholar

[42] Z. Fang, P. Fan, J. Guo, US Patent Application US2010/0101368A1 (2010).

Google Scholar

[43] B. Roebuck, M.G. Gee, R. Morrell. Hardmetals – microstructural design, testing and property maps. In: Kneringer G, Rödhammer P, Wildner H (Eds. ), Proceedings of the 15th International Plansee Seminar, 2001, Reutte, Plansee Group, Vol. 4, pp.245-266.

DOI: 10.1016/s0261-3069(01)00073-5

Google Scholar

[44] I. Konyashin, B.B. Straumal, S. Hlawatschek, B. Ries, B. Baretzky, K. Kolesnikova, A. Mazilkin, Functionally Graded Cemented Carbides Obtained on the Basis of Capillarity Phenomena. Part III: A Mechanism Explaining Co Drifts in Cemented Carbides with Various Carbon Contents, submitted to J. Mater. Sci. (2015).

DOI: 10.1016/j.matlet.2015.12.038

Google Scholar

[45] J. Gurland, L. Norton. Role of the binder phase in cemented tungsten carbide-cobalt alloys, J. Metals Trans., 4(1952)1051-6.

DOI: 10.1007/bf03397768

Google Scholar

[46] L. Ramqvist, Wetting of metallic carbides by liquid copper, nickel, cobalt, and iron, Int. J. Powder Met., 1(1965)2-20.

Google Scholar

[47] B.B. Straumal, I. Konyashin, B. Ries, K.I. Kolesnikova, A.A. Mazilkin, A.B. Straumal, A.M. Gusak, B. Baretzky. Pseudopartial wetting of WC/WC grain boundaries in cemented carbides. Mater. Let., 147(2015)105–108.

DOI: 10.1016/j.matlet.2015.02.029

Google Scholar

[48] N. K Sharma, I. D Wards, H. L., Fraser, W. S. Williams, SREM analysis of grain boundaries in cemented carbides. J. American Ceram. Soc., 63(1980)194–196.

Google Scholar

[49] A. Henjered, M. Hellsing, G. Nouet, A. Dubon, J. Laval, Quantitative microanalysis of carbide/carbide interfaces in WC-Co base cemented carbides. Mater. Sci. Technol., 2(1994)847–855.

DOI: 10.1179/mst.1986.2.8.847

Google Scholar

[50] J. Weidow, H. -O. Andrén. Grain and phase boundary segregation in WC–Co with TiC, ZrC, NbC or TaC additions, Int. J. Refractory Met. Hard Mater., 29(2011)38–43.

DOI: 10.1016/j.ijrmhm.2010.06.010

Google Scholar

[51] I. Konyashin, S. Hlawatschek, B. Ries, F. Lachmann, M. Vukovic, Cobalt capping on WC–Co hardmetals. Part I: A mechanism explaining the presence or absence of cobalt layers on hardmetal articles during sintering, Int. J. Refractory Met. Hard Mater., 42(2014).

DOI: 10.1016/j.ijrmhm.2013.08.016

Google Scholar

[52] I. Konyashin, S. Hlawatschek, B. Ries, F. Lachmann, M. Vukovic, Cobalt Capping: A Technique for Improving the Transverse Rupture Strength, Fracture Toughness and Wettability by Braze Alloys of WC-Co Hardmetals, Proc. 18th Int. Plansee Seminar, L. Sigl, H. Kestler, J. Wagner (eds. ), Reutte, 2013, V. 2, p. HM4-HM25.

DOI: 10.1016/j.ijrmhm.2013.08.016

Google Scholar

[53] D.S. Janisch, W. Lengauer, K. Rödiger, K. Dreyer, H. van den Berg, Cobalt capping: why is sintered hardmetal sometimes covered with binder? Int. J. Refractory Met. Hard Mater., 28(2010)466–471.

DOI: 10.1016/j.ijrmhm.2010.02.006

Google Scholar

[54] J. Guo, P. Fan, X. Wang, Z. Z. Fang, Formation of Co-capping during sintering of straight WC–10 wt. % Co. Int. J. Refract Met. Hard Mate. r, 28(2010)317–323.

DOI: 10.1016/j.ijrmhm.2009.11.005

Google Scholar

[55] E. Sachet, W. -D. Schubert, G. Mühlbauer, J. Yukimura, Y. Kubo, On the formation and in situ observation of thin surface layers of cobalt on sintered cemented carbides. Int. J. Refract Met. Hard Mater., 31(2012)96–108.

DOI: 10.1016/j.ijrmhm.2011.09.012

Google Scholar

[56] C.R. Comer, US Patent No. US2004211493, (2004).

Google Scholar

[57] Y. Taniguchi, H. Sasaki, M. Ueki, K. Kobori, Japan Patent No. 87-86314817 63169356, (1988).

Google Scholar

[58] J. Baldoni, S. Bennett, US Patent 5310605 (1994).

Google Scholar

[59] N. Minori, T. Masaaki, N. Toshio, US Patent 4911989 (1990).

Google Scholar

[60] I. Konyashin, B. Ries, F. Lachmann. PCT Patent Application WO2012/098102A1 (2012).

Google Scholar

[61] K.A. Thorsen. Aluminium contamination of cemented carbides during sintering, Advances in Powder Metallurgy & Particulate Materials, 8(1992)45-60.

Google Scholar

[62] K. A Thorsen,. H Fordsmand,. P. L. Praestgaard, K. A Thorsen, H. Fordsmand, P. L. Praestgaard, An explanation of wettability problems when brazing cemented carbides, Welding Research, 63(10)(1984)308-315.

Google Scholar

[63] A. Lisovsky, Thermodynamics of isolated pores filled with liquid in sintered composite materials Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 25A(4)(1994)733-740.

DOI: 10.1007/bf02665450

Google Scholar

[64] I. Konyashin, S. Hlawatschek, B. Ries, F. Lachmann, M. Vukovic, Cobalt capping on WC–Co hard metals. Part II: A technology for fabrication of Co coated articles during sintering, Int. J. Refractory Met. Hard Mater., 42(2014)136–141.

DOI: 10.1016/j.ijrmhm.2013.08.015

Google Scholar

[65] I. Konyashin, Healing of Surface Defects in Hard Materials by Thin Coatings. Vacuum Sci. Technol. A, 14(2)(1996)447-452.

DOI: 10.1116/1.580104

Google Scholar

[66] I. Konyahsin, CVD Coated Hardmetals - Causes of Transverse Rupture Strength Decrease. Functional Mater., l(1994)106-110.

Google Scholar

[67] A. Eder, W. Lengauer, K. Dreyer, H. van den Berg, H. -W. Daub, D. Kassel, Phase formation during sintering of functionally graded hardmetals. Proc. 16th Plansee Seminar 2005, Vol. 3, pp.81-94.

Google Scholar

[68] W. Lengauer, Diffusional control of the near-surface microstructure in functional gradient hardmetals. Materialwiss. Werkstofftechn., 36(10)(2005)460-466.

DOI: 10.1002/mawe.200500906

Google Scholar

[69] D. Janisch, W. Lengauer, A. Eder, K. Dreyer, K. Rödiger, H. -W. Daub, D. Kassel, H. van den Berg, Nitridation sintering of WC-Ti(C, N)-Ta(C, N)C-Co hardmetals, Int. J. Refractory Met. Hard Mater., 36(2013)22-30.

DOI: 10.1016/j.ijrmhm.2011.12.013

Google Scholar

[70] W. Lengauer, Transition Metal Carbides, Nitrides and Carbonitrides. In: Handbook of Ceramic Hard Materials, Vol. I, pp.202-252, ed. R. Riedel, Wiley-VCH, Weinheim (2000).

DOI: 10.1002/9783527618217.ch7

Google Scholar

[71] R. Frykholm, M. Ekroth, B. Jansson, J. Ågren, H. -O. Andrén, A new labyrinth factor for modelling the effect of binder volume fraction on gradient sintering of cemented carbides. Acta Mater., 51(2003)1115-1121.

DOI: 10.1016/s1359-6454(02)00515-3

Google Scholar

[72] R. Frykholm, B. Jansson, H. -O. Andrén, The influence of carbon content on formation of carbo-nitride free surface layers in cemented carbides, Int. J. Refractory Met. Hard Mater.,; 20(2002)345-353.

DOI: 10.1016/s0263-4368(02)00034-3

Google Scholar

[73] J. Glühmann, M. Schneeweiß, H. van den Berg, D. Kassel, K. Rödiger, K. Dreyer, W. Lengauer, Functionally graded WC-Ti(C, N)-(Ta, Nb)C-Co hardmetals: metallurgy and performance, Int. J. Refractory Met. Hard Mater., 36(2013)38-45.

DOI: 10.1016/j.ijrmhm.2011.12.009

Google Scholar

[74] A. Eder, W. Lengauer, K. Dreyer, H. van den Berg, H. -W. Daub, D. Kassel D, Gradient microstructure engineering in hardmetals. Proc. 16th Plansee Seminar 2005, Vol. 3, pp.120-135.

Google Scholar

[75] D. Janisch, W. Lengauer, K. Rödiger, K. Dreyer, H. van den Berg, Novel fine-grained hardmetals by use of multiphase powder precursors and reactive nitrogen sintering, Int. J. Refractory Met. Hard Mater.,; 28(2010)362-369.

DOI: 10.1016/j.ijrmhm.2009.11.012

Google Scholar