Twin-Roll Casting after Intensive Melt Shearing and Subsequent Rolling of an AM30 Magnesium Alloy with Addition of CaO and SiC

Article Preview

Abstract:

Intensive melt shearing is a process that can be used for mixing ceramic particles into magnesium melt. It applies shear stress to the melt and can de-agglomerate nanoparticle additions to magnesium melts without the use of electromagnetic fields or ultrasound. A wrought magnesium alloy AM30 was selected for processing with intensive melt shearing and subsequent twin-roll casting. AM30 with additions of CaO and SiC were also processed by this route and the hardness and microstructure were investigated. Sheets were rolled and their tensile strength was determined. The work was done as part of the European Union research project ExoMet. Its target includes the production of high-performance magnesium-based materials by exploring novel grain refinement and nanoparticle addition in conjunction with melt treatment by means of external fields.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 828-829)

Pages:

35-40

Citation:

Online since:

August 2015

Export:

Price:

* - Corresponding Author

[1] http: /www. exomet-project. eu.

Google Scholar

[2] W. Sillekens, D.J. Jarvis, A. Vorozhtsov, V. Bojarevics, C.F. Badini, M. Pavese, S. Terzi, L. Salvo, L. Katsarou, H. Dieringa: The ExoMet Project: EU/ESA Research on High-Performance Light-Metal Alloys and Nanocomposites; Metal. Mater. Trans. A 45A (2014).

DOI: 10.1007/s11661-014-2321-2

Google Scholar

[3] H. Dieringa: Properties of magnesium alloys reinforced with nanoparticles and carbon nanotubes: a review; J. Mat. Sci. 46 2 (2011) 289-306.

DOI: 10.1007/s10853-010-5010-6

Google Scholar

[4] Y. Wang, S.B. Kang, J. Cho. Microstructure and mechanical properties of Mg-Al-Mn-Ca alloy sheet produced by twin roll casting and sequential warm rolling, J Alloys Comp. 509 (2011) 704-711.

DOI: 10.1016/j.jallcom.2010.07.183

Google Scholar

[5] B. Wiese, C.L. Mendis, D. Tolnai, A. Stark, N. Schell, H. -P. Reichel, R. Brückner, K.U. Kainer, N. Hort, CaO dissolution during melting and solidification of a Mg–10 wt. % CaO alloy detected with in situ synchrotron radiation diffraction, J. Alloys Comp. 618 (2015).

DOI: 10.1016/j.jallcom.2014.08.151

Google Scholar

[6] Z. Fan, G. Liu, Solidification behaviour of AZ91D alloy under intensive forced convection in the RDC process, Acta Mat. 53 (2005) 4345-4357.

DOI: 10.1016/j.actamat.2005.05.033

Google Scholar

[7] Z. Fan, Y. Wang, M. Xia, S. Arumuganathar, Enhanced heterogeneous nucleation in AZ91D alloy by intensive melt shearing, Acta Mat. 57 (2009) 4891-4901.

DOI: 10.1016/j.actamat.2009.06.052

Google Scholar

[8] Z. Fan, G. Liu, M. Hitchcock, Solidification behaviour under intensive forced convection, Mat. Sci. Engin. A 413-414 (2005) 229-235.

DOI: 10.1016/j.msea.2005.09.037

Google Scholar

[9] S. Das, N.S. Barekar, O. ElFakir, L. Wang, A.K. Prasada Rao, J.B. Patel, H.R. Kotadia, A. Bhagurkar, J.P. Dear, Z. Fan, Effect of melt conditioning on heat treatment and mechanical properties of AZ31 alloy strips produced by twin roll casting, Mat. Sci. Eng. A 620 (2015).

DOI: 10.1016/j.msea.2014.10.019

Google Scholar

[10] M.A. Wells, A. Hadadzadeh: Twin Roll Casting (TRC) of Magnesium Alloys – Opportunities and Challenges, Mat. Sci. For. 783-786 (2014) 527-533.

DOI: 10.4028/www.scientific.net/msf.783-786.527

Google Scholar

[11] J. -K. Lee, and S. K. Kim, Effect of CaO Addition on the Ignition Resistance of Mg-Al Alloys, Mater. T. JIM., 52 (2011) 1483-1488.

DOI: 10.2320/matertrans.m2010397

Google Scholar

[12] B. Wiese, C. L. Mendis D. Tolnai, G. Szakács, A. Stark, N. Schell, H. P. Reichel, R. Brückner, K. U. Kainer, N. Hort, In situ synchrotron radiation diffraction during Melting and solidification of Mg-Al Alloys containing CaO, Magnesium Technology 2014 ( Eds M. Aldermann, M.V. Manuel, H. Hort, N.R. Neelaggeham) 191-195.

DOI: 10.1002/9781118888179.ch38

Google Scholar