An Attempt to Find an Empirical Model between Barkhausen Noise and Stress

Article Preview

Abstract:

A nonlinear empirical model between stress and Barkhausen noise is identified in this study. The identification procedure uses a genetic algorithm followed by a Nelder-Mead optimization procedure. The model is identified with the data set where an external load is applied to RAEX400 low alloyed hot-rolled steel samples. The results of the study show that the identified model performs well in stress predictions. The identified model includes three terms which are in accordance with the literature.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 768-769)

Pages:

209-216

Citation:

Online since:

September 2013

Export:

Price:

[1] D.C. Jiles, Dynamics of domain magnetization and Barkhausen effect, Czech. J. Phys. 50 (2000) 893-924.

Google Scholar

[2] M. Lindgren, T. Lepistö, Application of Barkhausen noise to biaxial residual stress measurements in welded steel tubes, Mater. Sci. Tech. 18 (2002) 1369-1376.

DOI: 10.1179/026708302225007376

Google Scholar

[3] D.M. Stewart, K.J. Stevens, A.B. Kaiser, Magnetic Barkhausen noise analysis of stress in steel. Curr. Appl. Phys. 4 (2004) 308-311.

DOI: 10.1016/j.cap.2003.11.035

Google Scholar

[4] S. Santa-aho, M. Vippola, T. Saarinen, M. Isakov, A. Sorsa, M. Lindgren, K. Leiviskä, T. Lepistö, Barkhausen Noise characterization during elastic bending and tensile-compression loading of case-hardened and tempered samples, J. Mater. Sci. 47 (2012).

DOI: 10.1007/s10853-012-6571-3

Google Scholar

[5] M. Blaow, J.T. Evans, B.A. Shaw, The effect of microstructure and applied stress on magnetic Barkhausen emission in induction hardened steel. J. Mater. Sci. 42 (2007) 4364-4371.

DOI: 10.1007/s10853-006-0631-5

Google Scholar

[6] A. Sorsa, K. Leiviskä, S. Santa-aho, T. Lepistö, A data-based modelling scheme for estimating residual stress from Barkhausen noise measurements, Insight 54 (2012) 278-283.

DOI: 10.1784/insi.2012.54.5.278

Google Scholar

[7] A. Sorsa, K. Leiviskä, Feature selection from Barkhausen noise data using genetic algorithms with cross-validation, in: M. Kolehmainen, P. Toivanen, B. Beliczynski (Eds. ), ICANNGA 2009, Lect. Notes Comput. Sci. 5495 (2009) 213-222.

DOI: 10.1007/978-3-642-04921-7_22

Google Scholar

[8] A. Sorsa, K. Leiviskä, S. Santa-aho, M. Vippola, T. Lepistö, A study on laser processed grinding burn simulation and analysis based on Barkhausen noise measurement, Insight 52 (2010) 293-297.

DOI: 10.1784/insi.2010.52.6.293

Google Scholar

[9] A. Sorsa, K. Leiviskä, S. Santa-aho, T. Lepistö, Quantitative prediction of residual stress and hardness in case-hardened steel based on the Barkhausen noise measurement, NDT&E Int. 46 (2012) 100-106.

DOI: 10.1016/j.ndteint.2011.11.008

Google Scholar

[10] Z. Michalewicz, Genetic algorithms + data structures = evolution programs, 3rd ed., Springer, Berlin, (1996).

Google Scholar

[11] L. Mierczak, D.C. Jiles, G. Fantoni, A New Method for Evaluation of Mechanical Stress Using the Reciprocal Amplitude of Magnetic Barkhausen Noise, IEEE T. Magn. 47 (2011) 459-465.

DOI: 10.1109/tmag.2010.2091418

Google Scholar

[12] K. Davut, C.H. Gür, Monitoring the Microstructural Changes During Tempering of Quenched SAE 5140 steel by Magnetic Barkhausen Noise, J. Nondestr. Eval. 26 (2007) 107-113.

DOI: 10.1007/s10921-007-0025-x

Google Scholar

[13] J.W. Wilson, G.Y. Tian, V. Moorthy, B.A. Shaw, Magneto-Acoustic Emission and Magnetic Barkhausen Emission for Case Depth Measurement in En36 Gear Steel, IEEE T. Magn. 45 (2009) 177-183.

DOI: 10.1109/tmag.2008.2007537

Google Scholar

[14] J.C. Lagarias, J.A. Reeds, M.H. Wright, P.E. Wright, Convergence properties of the Nelder-Mead simplex method in low dimensions, SIAM J. Optimiz. 9 (1998) 112-147.

DOI: 10.1137/s1052623496303470

Google Scholar